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RESUMO

Sistemas computacionais sio cada vez mais utilizados nas atividades de projeto
(CAD) e fabricagio (CAM). Porém, uma eficiente interface entre estes dois processos é
ainda motivo de muitas pesquisas. Este trabalho apresenta um Sistema de Planejamento
de Processos Automatizado, que realiza a ligagdo entre CAD ¢ CAM. Este Sistema é
baseado no conceito de “features”, que sio regides de interesse sobre a superficie de
um sélido {p.ex.: furos, rasgos, chanfros, etc...) de modo que a cada “feature” pode-se
associar um processo de fabricagio. Este sistema procura uma nova abordagem para o
problema, buscando ser o mais genérico possivel e valorizando a criatividade no processo

de concepgio do produto.



vil

ABSTRACT

Computational systems are more and more used in design (CAD) and manufacturing
(CAM) processes. On the other hand, an efficient interface between both processes is still
the aim of many researches. This work introduces an Automatic Process Planning System,
which performs the bridge between CAD and CAM. This system is based on the concept of
“features”, which are regions of interest on a solid surface (e.g.: holes, chamfers, pockets,
etc...). To each “feature” a manufacturing process can be associated. A new approach
for this problem is reached, becoming the system as generic as possible and increasing the
design process creativity.
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Capitulo 1

Introducao

No processo de concepgao de um produto, o primeiro e mais importante passo ¢ a reali-
zagao do planejamento do processo, que € o ato de preparar as instrugoes de operagao a
fim de produzir uma pega através um projeto de engenharia. Um plano detalhado contém
05 processos envolvidos na fabricagio, os parametros do processo (p.ex.: velocidade de
corte, velocidade de avango e profundidade de corte da ferramenta, lubrificagdo, etc...),
méquinas e ferramentas requeridas para a produgdo da pega e o caminho de corte das
ferramentas [Chang 90].

A qualidade do produto e o custo de sua produgéo sao fortemente influenciados pelo
planejamento do processo, tanto que esta tarefa foi definida pela “Society of Manufactu-
ring Engineers” como “a sistemética determinagao de métodos pelos quais um produto
possa ser fabricado economicamente e competitivamente”. Atualmente, o método de pro-
dugio estd gradualmente se movendo em diregéo 3 automacio, tornando-se necessaria a
criagio de sistemas de planejamento de processos auxiliados por computador (CAPP -
Computer-Aided Process Planning). Existem trés propostas bisicas para implementagao
de sistemas CAPP:

¢ Planejamento Variante de Processos
e Planejamento Generativo de Processos

¢ Planejamento Automético de Processos

A técnica variante € baseada na aplicagio de tecnologia de grupo. O computador é
utilizado para armazenar os planos de um grupo tecnoldgico por meio de procedimentos
e tabelas. Um técnico especializado edita o plano variante a partir de planos ja existentes
de uma pega similar. J4 a técnica generativa cria um novo plano sem referéncia a nenhum
plano ja existente, porém existe a necessidade de técnicos especializados para apoiar a
decisdo em pontos de incerteza.
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A técnica automaética, por outro Jado, procura eliminar a presenga de planejadores
de processo utilizando o computador em todos os aspectos. Um sistema de planejamento
de processos automatizado apresenta, portanto, um grau de complexidade muito maior
que as outras duas técnicas citadas.

1.1 CAPPs Automaéaticos

Um sistema de Planejamento de Processos Automatizado deverd, a partir de um sélido’
gerado em um modelador de sélidos, criar automaticamente o processo de fabricagao deste
sélido.

“Feature”2, que pode ser definida como uma regiao de interesse em um sélido (p.
ex.: furos, rasgos, chanfros, etc...), € um conceito fundamental para a compreensao de
sistemas CAPPs Automaéticos, que permitird associar a cada sélido a maneira pela qual
ele poders ser fabricado [Floriani 89]. Um sélido pode ser entao interpretado como sendo
uma “forma completa” composta por uma colegdo de componentes que sio as “features”.

Atualmente, existem dois métodos para se implementar um sistema CAPP Au-
tomdtico. O primeiro método transfere a tarefa de planejamento do processo para a
fase de projeto, incorporando informagdes de “features” no modelo computacional. Este
ambiente de projeto limita o projetista as “features” disponiveis, que sdo por definigdo
possiveis de serem fabricadas. O segundo método valoriza a criatividade do projeto, que
fica limitado somente & capacidade do sistema de CAD e & habilidade do projetista. Esta
concepgao de sistemas CAPP exige, no entanto, a criagéo de médulos intermedidrios para
reconhecimento e sequenciagio das “features” do sélido. Assim, este “design” de sistemas
CAPP Automaéticos pode ser descrito em termos de cinco médulos principais :

e Reconhecimento Automitico de “Features”, que tem por fungao reconhecer
e localizar uma “feature” em um soélido;

e Escalonamento Automitico de “Features”, que tem por fungdo gerenciar o
’ P G
médulo de refinamento? de “features”, gerando as possiveis sequéncias de usinagem;

e Selegdo do Processo de Usinagem, que tem por fungio gerar o processo de
fabricagdo da pega, utilizando-se das sequéncias fornecidas pelo escalonador;

¢ Planejamento do Método de Fixacgdo, que tem por fungio gerar os planos de
fixagdo para os possiveis planos de processo;

1Gonvencionou-se neste trabatho denominar a pega a ser manufaturada pelo termo sdlido, ja que no
ambiente em que este projeto estd inserido a pega serd obtida de um modelador de sélidos.

2Uma defini¢io de “feature” mais apropriada a este trabalho serd apresentada na segao 2.5.

3Convecionou-se neste trabalho chamar a unidio destes dois primeiros médulos de Refinamento Au-
tomético de *features”.
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e Geracio do Caminho de Corte, que tem por funcéo gerar o cédigo NC para a
maquina.

1.2 Estrutura do Trabalho

Este trabalho ¢ dividido em 8 capitulos. O capitulo 2 apresenta alguns conceitos neces-
sérios & compreeensio e implementagao do sistema. O capitulo 3 descreve a arquitetura
do sistema.

O capitulo 4 se relaciona ao médulo de Reconhecimento Automdtico de “Features”,
desde a concepgao do médulo até sua implementagéo, discutindo-se algoritmos € estruturas
principais. O capitulo 5 segue a mesma linha do capftulo 4, mas trata agora do médulo de
Escalonamento Automdtico de “Features”. Estes dois médulos juntos constituem a base
do sistema CAPP Automatico.

O capitulo 6 apresenta o médulo de Selegdo do Processo de Usinagem, o tratamento
das informacbes obtidas do médulo de Escalonamento Automdtico de “Features” por meio
de heuristicas. Sua saida é a Folha de Processo, que também é aqui discutida.

O capitulo 7 apresenta os resultados obtidos, comentando a integragdo do sistemna e
apresentando uma simulagao detalhada de seu funcionamento. Finalmente, o capitulo 8
desenvolve as concluses pertinentes ao trabalho.

1.3 Sugestdo para a Leitura deste Trabalho

Ao leitor que tenha a intengao de conhecer o funcionamento deste sistema sem considerar
detalhes técnicos de implementagao, a leitura dos capitulos 4, 5 e 6 pode ser ignorada. Ja
o leitor que desejar um aprofundamento maior no assunto, é sugerida a leitura na ordem
estabelecida no trabalho.



Capitulo 2

Conceitos Fundamentais

Neste capitulo apresentamos inicialmente o conceito de modelagem de solidos por fron-
teira, utilizado na modelagem dos sélidos do modelador de solidos didético e portanto,
nas “eatures” que irdo compor o sélido. A seguir, introduzimos o conceito acerca de
grafos planares, que apresenta uma melhor visualizagao de vértices, arestas, faces e seus
interrelacionamentos.

Apresentamos a seguir, o conceito de relagoes de adjacéncia e fun¢des de modelagem,
base para a implementagdo do sistema de Reconhecimento Automdtico de “Features”.
Apresentamos por dltimo o conceito de “features”, seu relacionamento em um sélido e a
conceituagio de arvore de “features”, base do sistema de Escalonamento Automdtico de
“Features”.

2.1 Modelagem de Sélidos — Boundary Representa-
tion

Boundary Representation (B-rep) [Méntyld 88} é uma técnica de modelagem de sdlidos
que se caracteriza por uma importante propriedade, que consiste na clara separagdo entre
as informagoes topolégicas e as informagdes geométricas de um sélido.

As informagdes topolégicas se referem &s informagdes de adjacéncia (p- ex.: capaci-
dade de descrever como cada face esté conectada as suas faces adjacentes de maneira que
um volume totalmente fechado seja definido). As informagoes geométricas se relacionam
a descri¢ao da geometria da superficie, descrigio da geometria das arestas e a localizagao
dos vértices.

A separagio entre topologia e a geometria permite economizar tempo computacional
e obter maior precisao numérica, ja que ndo ha necessidade de obter a adjacéncia das faces
por técnicas numéricas que analisam as proximidades geométricas de seus componentes.
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Figura 2.1: Grafo Conexo
2.2 Representagao por Grafos Planares

Um grafo é dito planar quando as arestas do grafo nao se cruzam, com excegao Nos
vértices. Todos os objetos que pertencem ao dominio de representagao dos sélidos podem
ser representados por um grafo planar. Os grafos planares sao divididos em grafos planares
conexos e grafos planares desconexos.

Para os grafos planares conexos (Figura 2.1) a férmula de Euler ¢ vilida:

v - nimero de vértices do grafo
v—-e+l=2 e - nimero de arestas do grafo
1 - nmimero de lagos do grafo

No caso de grafos planares desconexos (Figura 2.2) utiliza-se uma extensdo da
férmula de Euler:

le - ndmero de lagos externos
v—e+le=2—-2h+1h 1i - nimero de lagos internos
h - ndmero de furos

Quando for necessério se referir a vértices, arestas, lagos, o grafo planar serd utilizado

preferencialmente pois apresenta uma melhor visualizacio da forma que eles se inter-
relacionam.

2.3 Relacoes de Adjacéncia

As relagoes de adjacéncia estao relacionadas a topelogia do objeto, ou seja, & forma com
que os elementos primitivos (vértices, arestas, lagos) se relacionam. Elas sido a base para
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Figura 2.2: Grafo Desconexo

as funcbes de modelagem que serdo utilizadas nos algoritmos de comparagao de soélidos
e extragio de “features”. Pela simbologia definida por [Weiler 85], é possivel representar
nove relagdes de adjacéncia sobre os primitivos. Uma extensao desta simbologia permite
a representacio de faces com contornos miiltiplos. Cada face possui obrigatoriamente um
lago externo e zero ou mais lagos internos.

As relagdes de adjacéncia sao listas ou conjuntos de elementos organizados de alguma
forma. A terminologia utilizada é indicada abaixo:

{a1,as,...} - indica um conjunio nao ordenado de elementos
{a1,8,,...) - indica uma lista linear ordenada de elementos

a1, {az, a3, ...}] - indica uma lista semi-ordenada em que o primeiro elemento é determi-
nado e os demais nio possuem ordem especifica

< ay,0y,...> - indica uma lista circular ordenada de elementos

Sio utilizadas duas relagdes de adjacéncia nos algoritmos implementados. A relagéo
de adjacéncia I < L> (Fig. 2.3) que se refere & lista ordenada circular de lagos ao redor
do lago de referéncia, e a relagéo de adjacécia I [L] (Fig. 2.4) que se refere a lista semi-
ordenada de lagos , cujo primeiro elemento da lista é o lago externo da face de referéncia.
Os demais elementos ndo possuem ordem especifica e representam os lagos internos da
face de referéncia.

Abaixo definimos um simbolismo para representar a ordenagdo dos elementos de
uma lista ordenada circular A com n elementos.
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l<L>=<11,12,13,14 >

Figura 2.3: Relagdo de Adjacéncia l <L>

/
- X

1] = [, {01, 2)]

Figura 2.4: Relagao de Adjacéncia I [L]
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nt(ai, Ax)* = aisk { ;c<enZ

An =< ap,81,83,...,84iy... >

O indice nao indica a posicao absoluta do elemento na lista, mas indica apenas a
posigao relativa entre os elementos da lista.

Definicao 1 Duas listas ordenadas circulares serdo consideradas equivalentes se € apenas
se existir um elemento a, de A, e um elemento b; de B, tal que:

nt(a;, An)* = nt(b;, B, )* E=0,...,n

Bijecio ¢ uma relagio biniria R de um conjunto A para um conjunto B, aonde
todo elemento do conjunto B é a imagem de apenas um elemento do conjunto A e dois
elementos do conjunto A nado possuem a mesma imagem.

Em acordo aos tipos de elementos primitivos apresentados, a bijecao entre dois
s6lidos é definida pela associagio de quatro bijegdes entre os quatro conjuntos de ele-
mentos primitivos. A bijegio de um conjunto de vértices a um conjunto de vértices sera
referenciada por fv. Analogamente, as bijegdes entre conjuntos de arestas, lagos e faces
serdo referenciadas por fa, fl e ff respectivamente. E importante observar que caso e-
xista uma bijegdo entre dois sélidos é porque ambos os sélidos possuem o mesmo numero
de vértices, arestas, lagos e faces. Estas consideragdes nos permitem realizar as seguintes
definigoes:

Definigao 2 Seja a o conjunto de elementos primitivos do sélido A ¢ B o conjunto de
elementos primitivos do sélido B. Caso ezista uma bijegio g de o para B, implica na
ezisiéncia das bijecées fv, fa, fl e ff (Figura 2.5).

Definigio 3 Dada uma bijegio g : & — f3, define-se a imagem de uma lista circular orde-
nada A, =< o, 1,8z, ..., 0, ... > pela seguinte ezpressdo g(An) =< g(a0)o, 9(81)1, 9(az2)z,
..., 9(a));, ... >. Neste trabalho, utilizaremos a seguinte simbologia para representar a 1-
magem de uma lista circular ordenada:

nt(g(a:)i, 9(An))* = g(nt(ai, An) )irs k=0,...,n

Segundo a bijegdo g é possivel associar trés listas de elementos primitivos, que serdo
representadas por:

o | < L>: lista de lagos que circunda o lago {
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Figura 2.5: Bijegao entre dois Sdlidos

e g(I < L>): imagem da lista de lagos que circunda o lago l

o g(!) < L>: lista de lagos que circunda a imagem do lago !

Definigao 4 Caso as listas circulares ordenadas g(l < L>) e g(I) < L > sejam equiva-
lentes, entdo diz-se que o elemento primitivo | e sua imagem sob a bijecdo g possuem a
classe | < L> de relagio de adjacéncia equivalente (Figura 2.6).

Definicio 5 Caso todos os elementos primitivos | de um sélido A e suas respectivas
imagens sob a bijegio g possuam a relagdo de adjacéncia de classe | < L > equivalente,
entdo diz-se que o sélido A e sua imagem sob a bijeio g possuem a classe L <L > de
relagio de adjacéncia equivalente.

Definigao 6 Caso um sélido A e sua imagem sob a bijegdo g possuam todas as classes
de relagio de adjacéncia equivalentes, entdo diz-se que o sélido A e sua imagem sob a
bijecéo g sdo topologicamente equivalentes.

Defini¢do 7 Se um sdlido A e um sdlido B sdo topologicamente equivalentes sob uma
bijecdo g, entdo diz-se que a bijegdo g € de classe G*.

Definicio 8 Se um sdlido A e um sélido B possuem as classes L < L> e L|L)] de relagdo
de adjacéncia equivalentes sob uma bijecdo fl, entdo diz-se que a bijegdo fl ¢ de classe

1.
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Figura 2.6: Classe I < L> de Relagao de Adjacéncia equivalente

Teorema 1 A condigdo necessdria e suficiente para que ezxista uma bijecdo g de classe
G* de um sélido A para um sélido B € que ezxista uma bijegdo fl de classe fl* do conjunto
de lagos do sélido A para o conjunio de lagos do sélido B [Tsuzuki 88].

O Teorema 1 é conhecido como a “condigdo necessiria e suficiente para que dois
sélidos sejam topologicamente equivalentes”.

2.4 Funcoes de Modelagem

Conforme a “condi¢ao necesséria e suficiente para que dois sélidos sejam topologicamente
equivalentes”, devemos procurar por uma bijecdo fI de classe fI*. O processo de busca
por uma bijegao de classe fI* é, em seu plor caso, exaustivo e proporcional ao fatorial
do niimero de lagos do sélido. Isto ocorre porque nao foi definido nenhum critério que
permita analisar em estados intermedidrios se estamos no caminho correto.

Com o intuito de realizar uma busca nio exaustiva, foram definidas fungbes de
modelagem baseadas nas relagdes de adjacéncia [ < L> e I[L]. As fungdes de modelagem
permitem analisar em estados intermediarios se estamos no caminho correto pois & medida
que ocorrem as associagoes dos lagos dos dois sélidos, as funcdes de modelagem acumulam
informagdes sobre o pedago de um sélido que foi associado 2 um outro pedago de um outro
sélido, permitindo analisar se estd ocorrendo uma equivaléncia topolégica até o momento.
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Simulianeamente, as fungdes de modelagem permitem definir uma maneira para
representar “features”, aonde algumas condigdes permanecem indefinidas.

Definicao 9 Dados os conjuntos de lagos Al e Al', aonde Al é o conjunto de lagos do
sdlido A ¢ Al' C Al. Define-se a fungdo A para um lago la € Al pela sequinte expressdio:

n_ 3! se le Al
"(I’A‘)‘{d selg Al

Definigao 10 Dados os conjunios de lagos Al e Al', aonde Al ¢ o conjunto de lagos do
sélido A e Al C Al; definc-se a fungdo de modelagem A* para um lago la € Al e que
possui a relagdo de adjacéncia la <L>=<lh,ls, ..., I, >, pela seguinte expressdo:

A*(la, Al) =< M1, Ay, Mo, ALYz, -y M, Al) >

Definigiao 11 Dados os conjuntos de lagos Al e Al', aonde Al ¢ o conjunto de lagos do
sdlido A ¢ Al' C Al; define-se a fungio de modelagem A* para um lago la € Al e que
possui a relagdo de adjacéncia la [L] = [le,{L1, - - -, lin}], pela seguinte ezpressdo:

A+(la'= Al') = [A(ler All)e: {A(Iilr Al’)ih 04D ’A(liﬂ: AI'),',,}]

Para a representagio de “features” o subconjunto de lagos Al’ deverd conter todos
os lagos que compdem a “feature” e as relagdes de adjacéncia | <L > el [L] relativas
aos lagos das “features” sdo definidas pelas fungdes de modelagem A* e At (Fig. 2.7).
Informagdes geométricas podem ser aglutinadas as fungdes de modelagem, como o angulo
entre faces, coordenadas de vértices e comprimento de arestas. Uma definicao detalhada
de “features” & realizada na segdo 2.5.

Definicio 12 Dada uma bijegdog:a — B eo conjunto Al = AUU{d}, aonde Al' C Al;
define-se o mapeamento h : Al'Y — Bl pela seguinie ezpressdo:

o any = {20447 300

Definigio 13 Dados os sélidos A e B e uma bijegio g : @ — B. Define-se a imagem
de uma lista circular ordenade A*(la, Al') = < A(II,AI')l,A(Iz,AI')z,...,A(ln,AI')n >
sequndo o mapeamento h : Al — Bl pela seguinte expressdo:

h(A*(la, Al')) =< R(A(ly, AU))1, R(A(L2, Al')2)z, - - -, R A(ln, Al')n)n >
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d
d ‘ ad A*(11, Al') =< (13,90°),(12,90°),(d, ©),(d,©) >
11 2 A® (12, A"} =< (d, ©),(d, ©),(11,90°), (13,00°) >
A {13, Al') =< (12,90°),(11,90°),(d, ©),(d,©) >
ad 13
d 180° < © < 360°
d Quina Modelada

Figura 2.7: Representagdo de uma “feature”

Definigdo 14 Dada uma bijegdo h : Al s BI" caso as listas h(A*(1, Al')) e A*(h(l), Bl')
sejam equivalentes, entdo diz-se que ¢ lago | e sua imagem sob a bijegdo h possuem a
funcdo A* equivalente.

Definicdo 15 Caso todos os elementos primitivos ! de Al' e suas respectivas imagens sob
a bijegdo h possuam a fungdo A* equivalente, entdo diz-se que Al' e sua imagem sob a
bijegdo h possuem o fungdo A* equivalente.

Definigao 16 Se Al' e Bl' possuem ¢ fungdo A* equivalente sob uma bijegdo h, entdo
diz-se que a bijecdo h € de classe h*.

O conceito de fungio At equivalente é definido similarmente, € a busca por uma
bijegdo fI* sera direcionada pela busca de bijegoes h: Al'" - BI” de classe h*.

2.5 “Features”

Uma “feature” ¢é definida por [Floriani 89] como sendo uma regido de interesse sobre a
superficie de um objeto (p. ex. saliéncias, rasgos, furos, chavetas, etc...). Assim, um sélido
pode ser interpretado como sendo uma “forma completa” composta por uma colegio de
componentes que sdo as “features”.

J4 segundo [Chang 90], uma “feature” é um subconjunto de elementos geométricos
em uma pega de engenharia que possui caracteristicas especiais de projeto ou manufatura.
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Ainda segundo |Ferreira 91], uma “leature” ¢ a quntidade de material que deve ser
usinada.

Embora estas definicbes nio estejam incorretas, nao considerou-se nenhuma delas
completa. Assim, apresentamos a defini¢io abaixo, que € mais apropriada dentro deste
projeto:

Definicao 17 Uma “feature” € um conjunto aberto de faces (isto €, possui algumas con-
digées topoldgicas indefinidas), onde suas condigdes geoméiricas relevantes' sdo total-
mente definidas. Associado a cada um destes conjuntos haverd ao menos um processo de
manufatura de tal forma que a exiragio de material do sélido através deste(s) processo(s),
leva & oblengdo deste conjunto em um sélido.

Esta definigio de “feature” é mais completa, ja que deste modo pode-se modelar
uma “feature” sem ambiguidades e com certa flexibilidade, permitindo que “features”
ligeiramente diferentes entre si — mas com mesmo Processo de manufatura — possam
receber o mesmo tratamento em sua modelagem.

Na figura 2.8, a “feature” quina pode ser encontrada nos sdlidos 1 e 2 (regido
hachurada), nio importando as partes restantes dos sélidos. No caso do sélido 3, havera
uma equivaléncia topolégica entre sua regido hachurada e a quina, porém a geometria
do sélido ao redor do hachurado ndo é equivalente & quina®. Isto impede a equivalencia
entre a regiao hachurada do sélido 3 com a gquina, o que é coerente pois os processos de
manufatura sio diferentes. Na verdade, esta regido hachurada do sélido 3 é um pedago
de uma “feature” denominada furo ndo passante.

Ainda na figura 2.8, o sélido 4 apresenta uma regido hachurada com geometria
ligeiramente diferente da regido hachurada do sélide 1. No entanto, a modelagem da gquina
permite tratar as duas regiées hachuradas como sendo equivalentes, ou seja, tratam-se da
mesma “feature” na definicio proposta. Isto é coerente pois o processo de manufatura de
ambas as regides hachuradas € o mesmo.

Qutro aspecto importante é que uma “feature” pode ser extrafda de um sélido de
acordo com a defini¢ao que segue:

Definigao 18 Extragdo de Uma “feature”: a eztragdo de uma “feature” a de um
sélido B pode ser considerada como o preenchimento do volume que o “feature” a ocupa
no sélido .

A “Inversa de uma feature” a pode ser definida como o volume sélido que, unido ao
sélido 3, preenche o volume que delimitava a “feature” a no sélido B3, ou seja, é o volume
sélido que unido ao sélido B “extrai” a “feature” a do sélido §.

1No nosso caso, entende-se por relevante as condigbes de dngulo entre faces.
2 A5 faces da regido hachurada formam 90° com suas faces vizinhas, estando, portanto, fora da faixa
180° < © < 360° definidas na modelagem da gquina.
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o
d - ad A* (11, Al') =< (13,90°), (12,50°), (d, ©), (,©) >
r A*(i2, Al') =< (d, ©),(d, ®), (11,90°), (3,90°) >
AT (13, Al') =< (12,90%),(11,90°),(d, ©),{d, ©) >
o 13
d 1B0° < © < 360°
d Quina Modelada
1 2.
3. 4

AT

Figura 2.8: Definigao de “feature”
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2.6 Relacionamentos entre ¢ Features”

Dentro deste sistema, um dos principais objetivos serd escalonar as “features” que compoe
a pega modelada. Durante o escalonamento, aparecerd um relacionamento intrinseco entre
as “features”, que serd muito importante para o projeto. Assim, definimos os relaciona-
mentos entre “features” como sendo:

Definigao 19 “Features” Independenies: dadas duas “features” a e B, o serd dite inde-
pendente em relagdo a f se puder ser eziraida do sdlido modelado independeniemente
da exiragdo de 3.

Definicao 20 “Features” Aninhadas: dadas duas “Jeatures” o e B, a serd dita aninhada
em relagdo ¢ B se a sé puder ser eztraida do sélido modelado apds a extragdo de .

Definicio 21 “Features Inlerferenies”: uma regigo do sélido pode ser reconhecida por
vdrios conjuntos distintos de “features”. Como estes conjunios representam a4 mesma
regido do sélido, ocupando o mesmo espago fisico, chamamo-os “features” interferentes.

2.7 Conceituagao: Arvore de “Features”

O objetivo de um Sistema de Planejamento de Processos Automatizado é planejar um
processo de usinagem para uma determinada pega que se deseja manufaturar. Para atingir
este objetivo, é necessario que se avaliemn todas as possibilidades de se planejar este
processo, escolhendo a alternativa mais vidvel. A Arvore de “features” sera a estrutura
de dados que contera as informagoes necessarias para realizarmos esta avaliagéo.

Basicamente, uma Arvore de “features” pode ser considerada como uma irvore que
possui associada a cada né uma “feature”. Deste modo, a Arvore de “features” permite que
as “features” sejam dispostas hierarquicamente, segundo sua ordem de extragdo do sdlido.
Portanto, o que devemos fazer € reconhecer todas as “features” que compdem o sélido, em
todas as sequéncias de extragao possiveis®, sendo que cada uma destas sequéncias corres-
ponde, teoricamente, a um modo possivel da pega ser usinada. Cada uma das sequéncias
de extragio serd viavel ou néo para a usinagem da pega de acordo com critérios estabe-
lecidos que serao analisados em médulos posteriores que aplicam técnicas de Inteligéncia
Artificial.

Dentro do contexto de se usinar uma pega, deve-se possuir na Arvore de “features”
apenas “features” possiveis de serem manufaturadas. Para isto, estabelece-se um Arquivo

3Uma sequéncia de extragiio das “features” é aquela onde se reconhecem e se extraem “features” do
solido sucessivamente, até que o solido se encontre na forma de matéria-prima{p. ex.: um paralelepipedo),
ou seja, todas as “features” que compdem o sélido foram extraidas em uma determinada ordem.
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de “features”, o qual conterd todas as “features” que poderao ser reconhecidas pelo sistema
e, posteriormente, fabricadas®

Acerca de Arvore de “features”, enunciaremos os seguintes lemas:

o ’ . - i
Lema 1 Uma “feature” pode estar associada a nds distintos de uma mesma Arvore de
“features”.

I
Lema 2 Em consequéncia ao lema I, uma “feature” pode estar presenie na Arvore de
“features” em posicies relativas diferentes em relagio a uma sequnda “feature”.

’
Lema 3 Em uma Arvore de “features”, uma “feature” a associada a um mO Q serd
independente ou aninhada em relagio a todas as “features” associadas a nds de mesmo
nivel do né 1.

rs
Lema 4 Sejam duas “features” o e B associadas @ nds distintos de uma Arvore de fe-
atures”. As “features” o e  seréo independentes enire si se os diversos nés associados
as duas “features” aparecerem na Arvore de “features” segundo as trés posigbes relativas

possiveis.”

Lema 5 Sejam duas “features” a e 8 associadas a nés distintos de uma Arvore de “featu-
res”. A “feature” o serd aninhada em relagéo 4 “feature” B se nenhum dos nés associados
& “feature” a estiver ao mesmo nivel ou acima dos nds associados & “feature” B.

Lema 6 Sejam duas “features” o e § associadas a nds distintes de uma Arvore de “fe-
atures”. A “feature” a serd interferente em relagdo & “feature” B se nenhum dos nos
associados & “feature” a estiver abaizo ou acima dos nds associados & “feature” B.

Lema 7 Em uma drvore de “features”, se uma “feature” o € aninhada em relagdo a
uma “feature” B, entdo a “feature” o ¢ independente em relagdo a iodas as “features”
independentes em relagdo a “feature” 8.

4Isto ndo significa uma limitagio para o sistema, pois hé a possibilidade de s¢ criar novas “features”
sempre que o sistema chegar a um ponto onde nio exista mais nenhuma “feature” no Arguivo de “Featu-
res” que possa ser reconhecida pelo sistema (no caso de a sequéncia ainda ndo ter obtido, por exemplo,
um paralelepipedo). Isto pode ser realizado utilizando-se o moédulo Editor de “Features”, descrito no
capitulo de Especificagio do Sistema.

5As trés posicdes relativas possiveis sao: acima, abaixo e no mesmo nivel.




Capitulo 3

Especificagao do Sistema

Este capitulo tem por objetivo apresentar a arquitetura do sistema e detalhar cada um
de seus médulos. A técnica de representagio utilizada — PFS (Production Flow Schema)
[Miyagi 88), [Hasegawa 88] - se caracteriza por descrever conceitualmente os principais
blocos (partes ativas e partes passivas) do sistema, os seus conteddos e suas interrelagoes
e, foi adotado neste caso por descrever explicitamente a interagio dos diferentes médulos
do sistema. Os elementos ativos estio representados entre “[” “]” e 0s elementos passivos

por CIO” |

3.1 PFS — Refinamento Automatico de “Features”

A estrutura do médulo de Refinamento Automdlico de “Features” ¢ apresentada atraveés
do diagrama PFS da Figura 3.1. Cada um de seus elementos ativos e seus interrelacio-
namentos sdo apresentados a seguir:

o Escalonador de “Features”: Este médulo tem por fungéo determinar as possiveis
sequéncias de usinagem do sélido modelado. A proposta inicial era que fossem deter-
minadas todas as sequéncias possiveis. Isto se tornou inviavel ja que se percebeu que
o algoritmo pode gerar um conjunto de opgoes explosivo. Deste modo, decidiu-se a-
plicar heuristicas j& neste médulo, trazendo uma parte do planejamento do processo
para esta fase. Este modulo tem como entrada o sélido modelado e como saida uma
estrutura de arvore de “features” que contém as melhores sequéncias de usinagem
determinadas por heuristicas.

o Reconhecimento Automético de “Features”: Este médulo tem por funcao
realizar o reconhecimento e localizagio de “features” no sélido de interesse. Este
médulo tem por entrada a “feature” a ser reconhecida e o sélido representados por
Fungdes de Modelagem. A saida deste médulo pode ser “feature” reconhecida ou
“feqture” ndo reconhecida. Se a resposta for “feature” reconhecida, este médulo a

17
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"Features”
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Sélido segundo fundes de modelagem

Arquivo de “Features” disponiveis p/ Reconhecer

Arvore de “features”

Arvore de “features” mais sobremetal

Folha de processo

Feature e Sélido Para Comparagao no Reconhecedor

Resposta do Reconhecedor guanto & Comparagao

Sélido com “features” restantes
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Reinicializador do sistema

10 | Banco de dados de “features”

11 | Usuério

12 | Banco de dados de pegas em bruto

Figura 3.1: PFS - Sistema de Refinamento Automético de “Features”.
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localiza no sélido e: 1. extrai a “feature”, realizando em seguida a extragéo de suas
informacoes geométricas; 2. marca as faces da “feature” reconhecida. Este médulo
é gerenciado pelo médulo de Escalonamento de “Features”.

e Editor de “Features”: Este médulo tem por fungdo oferecer uma interagao entre
o usuirio e o sistema para a criagado de “features” que serdo inseridas no Banco
de Dados de “Features” (10). Este médulo tem por entrada um sdlido modelado e
como safda a permissio para reinicializagao do sistema apds a execugao das tarefas
por parte do usudrio.

e Verifica o Sobremetal: Este médulo verifica qual pega disponivel no Banco de
Dados de Pegas em Bruto (12) é a methor opgio quanto ao menor volume de so-
bremetal. Além disso, insere a sequéncia de usinagem para a retirada do sobremetal
antes de comegar a usinagem das “features”. Este médulo tem por entrada a estru-
tura da arvore de “features” e o modelo do objeto com as “features” extraidas. A
saida é a arvore de “features” completa.

e Geragao do Processo de Usinagem: este médulo tem por funcdo gerar um
processo de usinagem tendo como entrada a Arvore de “Feature”.

O interrelacionamento entre estas partes é apresentado a seguir. O objeto mode-
lado ¢ a entrada para o Sistema de Refinamento Automdtico de “Features”. O médulo
de Escalonamento de “Features” realiza o sequenciamento das “features” extraidas do
sélido. Para isto, este médulo necessita do Sistema de Heconhecimento de “Featiures”.
Se apés o processo de extragio de “features” ndo for possivel obter um primitivo bésico
(paralelepipedos, cilindros, etc...), isto significa que o Banco de Dados de “Features”
estd incompleto. Com a utilizagio do Editor de “Features”, o usuario poderd adicionar
as “features” restantes do sélido de entrada do sistema ao Banco de Dados de “Featu-
res”, bem como associar a estas “features” restantes um processo de manufatura. Desta
forma, poder-se-& obter o primitivo basico do sélido inicial, e a “feature” anteriormente
desconhecida constard agora no Banco de Dados de “Features”. Deve-se ressaltar, que
para executar esta tarefa junto ao Editor de “Features”, o usudrio deve ter conhecimento
de técnicas de planejamento de processo.

Quando o primitivo bésico é obtido, 0 médulo Verifica o Sobremetal determina qual
peca disponivel no Banco de Dados de Pegas em Bruto éa melhor opgdo quanto ao menor
volume de sobremetal. Terminado este passo, todo o sequenciamento das “features” estara
disponivel para o Sistema de Geragdo do Processo de Usinagem.

3.2 PFS - Escalonador Automatico de “Features”

A estrutura do médulo de Escalonamento Automdtico de “Features” é apresentada
através do diagrama PFS da Figura 3.2. Cada um de seus elementos ativos e interrela-
cionamentos sao apresentados a seguir:
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Figura 3.2: PFS - Escalonador Automatico
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e Construgao da Arvore de Features: Este sub-médulo do Escalonador Au-
tomdtico de “Features” tem por fungio estabelecer a hierarquia entre as “featu-
res” extraidas do sélido para que, posteriormente, possa ser gerado o processo de
usinagem. Opera retirando as “features” de (5), enviando por (6) para o Reconhe-
cedor Automdtico de “Features” que ird analisar se aquela “feature” existe no sélido
naquele momento. Se existir, entdo retorna por (7) a indicagdo da a existéncia
da “feature” mais suas caracteristicas gerais quanto a dimensdes, caracteristicas
geométricas, etc. .., que serao inseridas na drvore a fim de serem utilizadas no res-
tante da construgio da drvore bem como para construir a estrutura de avaliagdo de
relacionamentos e posteriormente gerar o plano de processo. Em seguida, tenta re-
conhecer novamente o mesmo tipo de “feature”. O Sistema de Marcar Faces (segao
3.3) nao permite que a mesma “feature” seja novamente encontrada no sélido. Se
for encontrada outra do mesmo tipo e em uma posigao diferente do sdlido, o pro-
cesso é repetido até nio encontrar mais nenhuma do mesmo tipo, passando a outro
tipo de “feature”, até terminar com todas do Arquivo de “Features”. Assim, um
nivel de &rvore é criado. A seguir, uma “feature” da érvore é escolhida segundo
algum critério, exirai-se a “feature” do sélido, e a partir deste né da arvore inicia-
se o processo novamente, até que se encontre um elemento primitivo (p.ex.: um

paralelepipedo);

o Estrutura de Avaliacdo de Relacionamentos: Este sub-mddulo do Escalonador
Automatico de “features” tem por objetivo determinar uma estrutura de dados que
torne simples a identificagdo dos relacionamentos entre as “features”, por meio de
regras simples. Para isto se utilizard a estrutura hierdrquica criada no sub-moédulo
descrito acima.

e Relatérios de Saida: Este sub-médulo do Escalonador Automético de “features”
tem por fungao gerar relatérios que permitem ao usudrio verificar o contetido de
cada né das estruturas, de forma a conferir e completar informagdes geradas pelo
sistema. Apds passar por ele, os dados gerados pelo Escalonador Automadtico de
“Features” sao passados ao médulo de selegio do processo de usinagem.

3.3 PFS — Reconhecedor Automatico de “Features”

A estrutura do médulo de Reconhecimento Automdtico de “Features” é apresentada a-
través do diagrama PFS da Figura 3.3. Cada um de seus elementos ativos e interrelaci-
onamentos sac apresentados a seguir:

e Reconhecedor de “Features”: Este sub-médulo tem por objetivo realizar o re-
conhecimento e localizagio da “feature” no sélido. A saida é “Feature” reconhecida
ou “Feature” néo reconhecida.
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Figura 3.3: PFS - Sistema de Reconhecimento Automatico de “Features”.
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Figura 3.4: PFS - Editor de “Features”.

e Marcador de Faces: Se a “feature” for reconhecida e o “fag”! para marcar faces
estiver setado, o Marcador de Faces sera acionado. A finalidade deste sub-modulo é
permitir que varias “features” de um mesmo tipo possam ser reconhecidas em um
mesmo nivel da A‘r'vore de “Features”.

e Exirator de “Features”: Se a “feature” for reconhecida e o “flag” para extrair a
“feature” do sélido estiver setado, o Extrator de “Feature” gera um arquivo contendo
o sélido com a “feature” extraida em fungdes de modelagem.

e Extrator de Geometria: Apds a extragio da “feature”, as informagées geométricas
necessirias para a geragio de um processo de usinagem sao obtidas do solido.

3.4 PFS - Editor de “Features”

A estrutura do médulo do Editor de “Features” é apresentada através do diagrama PFS
da Figura 3.4. Cada um de seus elementos ativos interrelacionamentos sio apresentados
a seguir:

1Este “flag” e os outros do médulo de reconhecimento, 830 gerenciados pelo escalonador.
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Arvore de “features”
Comprimentos z,y, z do solido
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Banco de dados de pegas em bruto
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Figura 3.5: PFS - Verifica Sobremetal.

¢ Sistema de Marcagao de Faces: O usuério (4) interage com o sistema, marcando
as faces no sélido 2 2 que formardo a “feature” desejada.

e Geracao da “Feature” em Funcdes de Modelagem: Baseado nas faces mar-
cadas (2) e no sélido original (1), este sub-médulo gera a “feature” em Fungoes de
Modelagem (segéo 2.4).

3.5 PFS — Verifica o Sobremetal

A estrutura do médulo de Verificagdo de Sobremetal é apresentada através do diagra-
ma PFS da Figura 3.5. Cada um de seus elementos ativos e interrelacionamentos sao

apresentados a seguir:

e Determina Comprimentos Principais*: Este sub-médulo tem por objetivo de-
terminar os comprimentos méximos da pega nas diregoes x,y, 2.

2g5lido gerado pelo proprio usuério € que contenha a “feature” que lhe interessa. Neste caso, o sistema
é utilizado somente para gerar “features” para o banco de dados.

3g4lido que restou do processo de geragao do Plano de usinagem. Neste caso o editor é acionado
quando ndo se atingiu um sélido primitivo (p.ex. um paralelepipedo) apés a construgao da arvore de
“features”.

4Nesta fase do projeto utilizaremos somente pegas em bruto de formato de paralelepipedo.
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Figura 3.6: PFS - Selecdo do Processo

e Seleciona Peca em Bruto: A partir dos comprimentos principais do sélido é
selecionada uma pega em bruto que consta do Banco de Dados de Pegas em Bruto.
Este banco de dados deve conter — em uma situagio real — somente pegas disponiveis
em estoque, ou com possibilidade de ser adquirida.

3.6 PFS — Selegao do Processo de Usinagem

A estrutura do médulo de Selegdo do Prcesso de Usinagem é apresentada através do
diagrama PFS da Figura 3.6. Cada um de seus elementos ativos e interrelacionamentos
sao apresentados a seguir:

¢ Inversor Da Sequéncia: este sub-médulo tem por fungdo construir uma estrutura
baseada numa das sequéncias de extragdo da arvore de “features”. Esta estrutura
serd uma sequéncia de “features” invertida em relagdo i sequéncia da estrutura da
arvore, para que se possa gerar o plano de processo. A inversdo desta sequéncia é
necessaria e os motivos sao apresentados no capitulo 6;

e Gerador Da Sequéncia De Usinagem: este sub-médulo tem por fungio trocar
a posigio de algumas das “features” da sequéncia, aplicando heuristicas de modo a
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racionalizar tempos de troca de ferramentas, de maquinas, etc. ... Este médulo é
necessario para evitar uma sequéncia de extragio aleatdria, que poderia levar a um
processo de fabridagio longo e de alto custo;

e Gerador Da Folha De Processo: este sub-médulo tem por fungio criar uma
folha de processo aplicando heuristicas para se determinar velocidade de corte, fer-
ramentas de desbaste e acabamento, etc. ... Este médulo deve possuir uma conexao
com um banco de dados eficiente e um programa de tecnologia de grupo, para que
se racionalize a busca dos parametros.



Capitulo 4

Reconhecimento Automatico de
“Features”

Este médulo tem por fungdo realizar o reconhecimento, localizagao e/ou extragao e mar-
cagio de “features” no sélido de interesse. Este médulo tem por entrada a “feature” a ser
reconhecida e o sélido representados por fungoes de modelagem.

4.1 Algoritmo de Reconhecimento de “Features”

Os algoritmos para comparagdo de sélidos e reconhecimento de “features” implementam
a busca por bijegoes entre dois subconjuntos de lagos. Os algoritmos sdo estruturados em
trés principais médulos, conforme o algoritmo abaixo:

e Passo 1: seleciona a primeira associagao 1.

o Passo 2: acrescenta uma associagao ao conjunto de associagoes.

o Passo 3: realiza o “backtracking”? para uma associagao considerada incorreta.
Estrutura do algeritmo

<Passo 1: Seleciona a primeira associagao>

ok = true
k=1
repeat

1 Associagdo de um lago do sélido A com um lago do sélido B

2 Ao se construir um grafo de busca, pode-se verificar que a escolha de um determinado caminho foi
inadequada. O “backiracking” ¢ utilizado para se retornar a um determinado né anterior e escolher um
novo caminho a partir deste[Nilsson 82].

27
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if ok == true
ok = false
<Passo 2: Seleciona uma nova assoclagao>
if <Passo 2 com sucesso>

ok = true
k=Fk+ 1
else
k=k-1

<Passo 3: realiza o “backtracking” >
if <Passo 3 com sucesso>
ok = true
k=k+1
until k == 0ork ==n

e ok representa o estado do algoritmo

e k representa o nimero de associagdes ja realizadas

e 7 representa o mimero total de associagdes a serem selecionadas

No Passo 1 deve ser selecionada a primeira associagio {la',i'). E muito impor-
tante que sejam consideradas heuristicas ao se selecionar a primeira associagao de lagos,
permitindo encurtar o tamanho da drvore de busca.

No Passo 2 uma nova associagio deve ser selecionada (la*,16*). E conveniente que
heuristicas sejam definidas para a escolha do lago la*¥, aumentando a eficiéncia das com-
paragoes entre as fungoes de modelagem A* e AT,

O Passo 3 deveré ser executado caso nao seja possivel encontrar uma bijegao no
passo 2. O lago la* previamente selecionado, deve ser associado a um novo lago [b*, tal
que as mesmas condigdes do Passo 2 sejam satisfeitas. Nos Passos 2 e 3, é conveniente que
a escolha do lago Ib* seja feita pelas mesmas regras que foram adotadas para a escolha do
lago la*.

O tamanho da arvore de busca pode ser encurtado, pela aglutinagéo de informagoes

topoldgicas, como o nimero de arestas do lago, as fungdes de modelagem.

Para o algoritmo de comparagao entre sélidos e reconhecimento de “features”; o
nivel maximo é definido pelo nimero de lagos dos sélidos que estdo sendo comparados.
Para o algoritmo de reconhecimento de “features”, o nivel maximo é definido pelo numero
de lagos da “feature” a ser reconhecida.

4.2 Implementacao

Foram implementados quatro versdes do Sistema de Reconhecimento Automético de “Fe-
atures” (versdes 0.0, 1.0, 1.1 e 1.2) até a finalizagao da versdo final. A implementagao dos
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programas foi baseada no algoritmo apresentado na segio anterior e detalhes de maior
importancia da versao 1.2 sdo descritas & seguir (Os detalhes das versdes 0.0, 1.0 e 1.1 530
explicados em [Toledo 91a] ). Abaixo é apresentada uma tabela destacando as diferengas
entre cada versao.

Versao | Topologia | Topologia | Informagoes | Processo
conexa | desconexa | Geométricas | de busca

0.0 sim nao nao arbitrario
1.0 sim nao nao heuristica
1.1 sim s1m nao heuristica
1.2 sim sim sim heuristica

Nesta versdo sao utilizadas as fungdes A* e At baseadas nas relagdes de adjacéncia
! < L> e l[L). Portanto qualquer tipo de solido pode ser comparado a nivel de topologia.
As informacdes geométricas utilizadas no processo de reconhecimento de “features” sio
discutidas na segao 4.5.

A seguir sdo apresentados os médulos principais do programa destacando os meca-
nismos utilizados para aumentar sua eficiéncia.

4.3 Modbdulos Principais - Versao 1.2

4,3.1 Passo 1

No Passo 1 (do algoritmo apresentado na segio 2.5) é realizada a escolha da primeira
associagio (lal,lb'). Este passo é muito importante pois se for realizada uma escolha
errada do primeiro par, este equivoco poderé ser descoberto somente em um estigio mais
avangado do processo de comparagao e todo o tempo gasto até este momento serd perdido.
Sendo assim, é interessante criar um bom mecanismo para a escolha do primeiro par e
entdo reduzir a quantidade de possiveis associagoes no primeiro passo, contribuindo para
uma conclusdo mais rapida do processo de comparagao.

O mecanismo implementado para o passo 1 do comparador de sélidos é baseado
no levantamento estatistico da quantidade de faces com um mesmo mimero de arestas.
Com este levantamento estatistico pode-se determinar a quantidade de arestas (N,) das
faces com mesmo nimeroc de arestas que aparecem menos vezes no sdlido (ou “feature”)
A. Serd escolhido como possivel primeira face de A uma face qualquer do sélido A que
tenha N, arestas. No sélido B seré montada uma lista com todas as faces desse sélido que
apresentam N, arestas. Portanto, no pior caso, a face escolhida do sélido A serd associada
com todas as faces do sélido B que tém N, arestas.
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3tassociagao
3<L>=<1,2,44>—1 +— Cc<L>=<AB,DD>
A*(3,Bl') =< 1,2,d,d > =1 —+— A*(C, Al') =< A ,B,d,d>
2®associagao
9« [>=<1,1,8,4 >~——1 ~+— B<L>=<AACD>
AY(2,R) =<1, 1,3,d > ~—1 “+—=A*(B, Al') =< A, A, C,d>
I* associagao
1< L>=<2,23>-— ¢ ~+— A< L>=<B,B,C>
A*(1, Bl') =< 2,2,3 > -1 —+— A*(A,Al) =< B,B, (' >

No exemplo desta figura, o proximo par a ser associado serd o par
{D,4), pois o primeiro “d" encontrado em uma fungao A* ou A% corresponde
a face D na relagio de adjacéncia 1a2 < L'> ¢ a face 4 na relagao de adjacéncia
2 <L>.

Figura 4.1: Exemplo - Passo 2

4.3.2 Passo 2

No Passo 2, a escolha de um novo par de faces n3o ¢ feita de forma aleatéria. O préximo
par a ser escolhido € o primeiro “d” (“don’t care” - face nao associada que consta em
alguma relagao de adjacéncia das faces j4 associadas) encontrado nas funcbes A* ou AT
(percorridas alternadamente) das faces jé associadas partindo do primeiro par. A figura
4.1 ilustra através de um exemplo o processo descrito.

Com este mecanismo de escolha da préxima associagio, o grau de aleatoriedade
diminui de maneira significativa, permitindo que o algoritmo convirja para uma solugao
mais rapidamente. O caminho de escolha das faces se assemelha a um espiral que envolve
a primeira face escolhida (Figura 4.2). Utilizando este mecanismo, o processo de busca
pela “condigao necessaria e suficiente para que dois sélidos sejam topologicamente equi-
valenies” é, em seu pior €aso, proporcional ao quadrado do nimero de lagos do sdlido.
Dependendo da eficiéncia na escolha da primeira associagdo (Passo 1), o processo de busca
chega a ser, em seu pior caso, proporcional ao nimero de lagos do sélido. Na figura 4.3
pode-se observar a grande eficiéncia do algoritmo implementado

4.3.3 Passo 3

O Passo 3 realiza o “backtracking” para uma associagdo considerada incorreta. No al-
goritmo implementado, todas as faces associadas a partir da fungao A* ou AT que gerou
a associagdo considerada incorreta sao desassociadas. Os novos pares serao escolhidos a
partir de uma nova posigao de concatenagdo das listas circulares (relagao de adjacéncia
! < L> e fungao de modelagem A"} desta face (se a associagao incorreta foi gerada por
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Figura 4.2: Caminho de escolha das faces

RESULTADOS
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500 |
400 |-

300 -

200

100

alxa maxima gue|
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0 2 4 6 8 10
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Figura 4.3: Eficiéncia do algoritmo implementado
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5 | E
4 |D
31C
2| B
1 1A

No exemplo desta figura, considerando que os pares (D, 4)e(E,5) te-
nham sido escolhidos a partir das fungdes do par (B, 2), e a associagao (E,5)
{oi considerada incorreta, entdo os pares (D,4) e (E, 5) serdo retirados. Uma
nova posigio de concatenagho para o par (B, 2) sera procurada e as novas
associagbes seréo realizadas a partir desta nova situagio.

Figura 4.4: Exemplo - Passo 3

uma fungio A*) ou a partir de uma nova posicdo de combinagdo das listas desconexas
(se a associagao incorreta foi gerada por uma fungdo A%*). Esgotando-se todas as pos-
sibilidades de concatenagao, todo o processo descrito acima sera repetido, ou seja, novo
“backtracking” serd realizado. A figura 4.4 mostra um exemplo do processo descrito.

Se apés um “backtracking” o algoritmo retornar ao primeiro par associado e este
ndo apresentar uma nova posigao de concatenagio, entdo um novo primeiro par devera
cer escolhido. Esta escolha seré feita a partir dos possiveis primeiros pares determinados
estatisticamente no primeiro passo.

4.4 Principais Estruturas - Versao 1.2

4.4.1 Armazenamento do Sélido

Estrutura de armazenamento das informagédes topoldgicas necessdrias do solido:

struct solido

{
face loop ;
face =11 ;
face «1.d1 ;
int n ;
int 4 ;

e face: tipo de dado utilizado para nomear as faces. Foi definido como tipo ini
(typedef int face ).
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e loop: lago do sélido.

e *I_I: ponteiro para a lista | <L> do lago.

e *1_d_l: ponteiro para a lista [ [L] do lago.

e n: tamanho da lista [ < L> do lago {equivalente ao niimero de arestas do lago).

e d: tamanho da lista I[L] do lago (equivalente ao nimero de lagos externos ¢ internos
do lago - loop).

As informagoes necessérias do objeto sao obtidas a partir de um arquivo gerado
pelo modelador de solidos contendo informacoes topolégicas e geométricas do objeto.
Elas sao colocadas em um vetor da estrutura descrita. A estrutura de armazenamento
das informagdes geométricas do sélido € explicada na préxima segao.

4.4.2 Armazenamento da Pilha

Estrutura de uma posicdo da pilhe utilizada para armazenar o estado de comparagdo:

struct pilha
{
struct a ;
{
face a 3
face #11 ;
face *h.1bd 1[2] ;
face *1.41 ;
face *h.1lbd.d1(2] ;
STRGEN *geol.l ;
}asi
struct b ;
{
face b ;
face =gl ;
face #1bd.gli2] ;
face #gldl ;
face *1bd.d.gll2] ;
STR.GED *geogll ;
}es
int
n,
4,
ASBOCE,
Tots,
descs,
*combs ,

}
A siruct a se refere ao solido A e a struct b se refere ao sélido B.

e a: laco do sélido A (Dominio).
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o *LL: relagio de adjacéncial <L> do laco do sélido dominio.
e *h_lbd_l: Imagem da fungdo A*.

e *1_d_I: relagio de adjacéncia [ [L] do lago do sélido dominio.
e *h_lbd_d_1: Imagem da fungdo A*.

o *geo_l.l: Lista que contém as informagcoes geométricas de cada face da relagao de
adjacéncia [ < L> do lago a.

e b: lago do sélido B (Imagem).

e *gl I relagdo de adjacéncia | < L > do lago do sélido imagem.
e *Ibd_gl: fungio A* do lago do sélido B.

e *gl_d_l: relagao de adjacencia 1[L] do lago do sélido imagem.
o *Ibd_d_gl: fungdo A* do lago do sdlido B.

o *geo_gl I: Lista que contém as informagdes geométricas de cada face da relagdo de
adjacéncia I < L> do lago b.

e n: nimero de arestas do lago do sélido A ou B, 34 que por definigdo o nimero de
arestas dos lagos dos dois solidos tem que ser o mesmo para ocorrer equivaléncia.

e d: tamanho da relacio de adjacéncia ! [L] dos lagos do par associado nesta posigao
da pilha.

e assocs: quantidade de pares associados a partir da parte conexa desta posigao na
pilha.

e rots: utilizado para verificar se as listas circulares nesta posigao ja realizaram uma
rotagao completa.

o descs: quantidade de pares associados a partir da parte desconexa desta posigao
na pilha

o *combs: utilizado para verificar se as listas referentes a parte desconexa ja realiza-
ram todas as combinagdes possivels.

As fungdes de modelagem das faces jé associadas podem se modificar ligeiramente
com a associagao de um novo par de faces 3 pilha ou realizagéo de “backtracking”. Assim,
procurou-se, com a estrutura da pilha (struct pilha), armazenar as fungoes de modelagem
das faces associadas, e alterar somente algumas informagdes de algumas fungoes de mo-
delagem, descartando-se a necessidade de montar todas as fungdes de modelagem para
cada alteragdo na pilha. As fungdes de modelagem do sélido dominio (sélido A) séo, na
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verdade, armazenadas na pilha na forma de imagem de suas fungdes de modelagem. Dessa
forma, a comparagao das fungdes de modelagem dos dois sélidos é feita de forma direta,
sem a necessidade de se calcular a imagem da fungao de modelagem do sélido A todo
instante.

Além disso, as fungoes de modelagemn das faces associadas dos dois sélidos tem uma
posigiao de concatenagdo para associar seus elementos, j4 que sdo listas circulares. O al-
goritmo implementado busca por essa concatenagio assim que houver alguma informagao
na fungio de modelagem e armazena na pilha em sua forma concatenada, evitando a
realizagao de operagoes desnecessarias.

4.5 Informacgoes Geométricas

Apesar do algoritmo estar baseado em informagoes topolégicas obtidas de um modelo
B-rep e contidas na estrutura do sélido do Reconhecedor Automaético de “Features”, as
informagbes geométricas sao importantes para se definir exatamente a “feature” e o sélido.

As informagdes geométricas estdo sempre associadas as faces do sélido € estao con-
tidas em uma estrutura paralela & estrutura que contém as informagdes topoldgicas do
-
solido.

Estrutura de armazenamento das informagdes geométricas do sélido ou da “feature”:

struct geometria

{

face loop ;
STR_.GED *geo 1.1 ;
int n ;

} s
e loop: lago do sdlido.

e *geo_ll: ponteiro para a lista que contém as informacdes geométricas de cada face
da relagio de adjacéncia | <L > do lago definido em loop.

e n: tamanho da lista apontada por *geo.l1 (equivalente ao nimero de arestas do
lago).

e STR_GEO: estrutura das informagoes geométricas consideradas.

Se fossem considerados, por exemplo, os comprimentos das arestas e angulos entre
faces, a estrutura STR_.GEO teria o seguinte formato:
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struct STR_GED

{
float ang ;
flocat comp ;

b1

Convém notar que as informagdes geométricas consideradas estdo totalmente asso-
ciadas as relagdes de adjacéncia ! <L> do sdlido. A figura 4.5 ilustra como sao obtidas
as informagdes geométricas da estrutura em que estio armazenadas e o que elas signifi-
cam. As informagdes de dngulo entre faces e comprimento de aresta sdo as informagoes
geométricas consideradas no exemplo.

As informacdes geométricas somente sio utilizadas no processo de comparagao de
s6lidos depois de considerada a equivaléncia topolégica entre as faces dos dois sélidos (ou
um sélido e uma “feature”).

4.5.1 Determinacao das Informacoes Geométricas

O Sistemna de Reconhecimento Automatico de “Features” foi implementado de forma a
suportar qualquer tipo de informagao geomeétrica que o usudrio determinar. O sistema
suporta também a utilizagao de vérias informagoes geométricas simultaneamente.

Inicialmente, estio implementados trés tipos de informagoes geométricas:

caso 1 — angulos entre faces.
caso 2 — comprimentos das arestas.

caso 3 — angulos entre faces e comprimentos das arestas.

Se o usuario optar por um dos trés casos j4 existentes, ele deve definir no arquivo
compara.h, na posigao de definigao dos casos (j4 consta no arquive uma definigdo inicial)
o caso que ele ird utilizar. Por exemplo, se o usudrio se decidir pela utilizagéo do caso 2,
devera constar no arquivo compara.h a seguinte implementagao:

#iundef casol
#tdefine caso2
#tundef caso3

Caso o usuario necessite de outras informagoes geométricas, ele mesmo pode criar as
funcgdes necessarias para que €ssas informagdes geométricas sejam consideradas. As mo-
dificagdes sio simples, pois as fungdes a serem criadas serao semelhantes as ja existentes,
com excessio de pequenos trechos que estio impressos com letras maiores para destacar
a mudanga. Para acelerar as modificagoes, pode-se copiar blocos contendo as fungdes ja
criadas e apenas realizar as modificagoes.
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vetor da struct sdlide 3]4
d = *1.dJd
loop = 3
R= 4 *11
121415
L— 4° clemento da lista *11
vetor da struct geometriu
loop = 3
h = 4] tgeoll

90 [ 11 J 90 | 23] 90 | 14 [270 2.4

b= 2° campo do 4° elemento da lista *geod.)
tre———a 1° campe do 4° elemento da )ista *geodd

Do exemplo desta figura obtemos que o dngulo entre as faces 3 (loop =
3, indicado na struct solido} e 5 (4° elemento da lista apontada por *11) € 270°
{1° campo do 4° elemento da lista apontada por *geo.1.1). Da mesma forma, o
comprimento da aresta entre as faces 3 e 5 & 32.4mm (2° campo do 4° elemento
da lista apontada por *geo.l1). Portanto, as informagSes geométricas de uma
determinada face estdo localizadas em posigbes andlogas no vetor da street
geomedria, O nfimero de campos é determinado pelo nimero de informagdes
geométricas consideradas.

Figura 4.5: Associagao da topologia e geometria
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4.6 Extrator de “Features”

Para a construgao da &rvore de “features” é de fundamental importéancia que se extraiam
as “features” reconhecidas no sélido.

Uma solugéo genérica pode ser obtida pela implementagao de um sisterna baseado
em operagoes booleanas de um modelador de sélidos. Como no periodo de implementagao
do sistema, o Modelador de Sélidos Didéatico do LAS-EPUSP néo estava com algumas
das fungbes necessérias 3 implementagio do Eztretor de “Features” em funcionamento,
buscou-se um outro tipo de solugdo. A solucdo encontrada baseia-se em Funges de
Modelagem (segao 2.4). Asfungdes de modelagem do sélido de interesse sdo manipuladas
de forma a gerar um sélido sem a “feature” que se desejava extrair.

4.6.1 Processo de Extracao

O sistema implementado é bascado em algumas regras que sdo enumeradas a seguir e
para cada uma destas regras é apresentada um exemplo ilustrativo do que representaria
as modificacoes das fungdes de modelagem em um mundo fisico.

1. Extragao de Lagos: O primeiro passo para a extragdo de uma “feature” é realizada
atrvés da seguinte heuristica:

Heuristica 1 Todos os lagos da “feature” reconhecida devem ser retirados das
Fungées de Modelagem correspondentes ao sélido.

A “feature” reconhecida é localizada no sélido. Isto é possivel pois no processo de
reconhecimento da “feature” no sélido é realizada uma busca por uma bijegdo dos
lagos da “feature” para os lagos de um pedago do sélido (Segdo 2.3, Teorema 1}. Os
lagos correspondentes a esta “feature” sao entao retirados das fungdes de modelagem

do sélido (Figura 4.6).

2. Aglutinagido de Arestas: Ha casos em que a extragao das “features” nao € possivel
somente utilizando o heuristica 1. E necessirio a execucéo de outros passos para
que se obtenha a extragio completa da “feature” no sélido. Na Figura 4.7, o sdlido
resultante da aplicagdo do heuristica 1 néo é topologicamente equivalente a um
paralelepipedo (apesar de visivelmente ser), sendo necessério a retirada do vértice
v e a fusdo das arestas a], e a4, em uma tUnica aresta. Para a ocorréncia disto, foi
criado a seguinte Heuristica:

Heuristica 2 Se duas arestas vizinhas fazem fronteira com os mesmos lagos, entdo
estas duas arestas sdo iransformadas em uma inica aresta.

A aplicagio desta heuristica é exemplificada na Figura 4.8.
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s Aplicacao da

Heuristica 1

Figura 4.6: Processo de extragéo de lagos do sélido.

Heuristica 2 Se duas arestas vizinhas fazem fronteira com os mesmos lagos, entdo
estas duas arestas sdo transformadas em uma wdnica aresta.

A aplicagio desta heuristica é exemplificada na Figura 4.8.

3. Extracao de Lacgos Internos: Para extragao de “Features” que estejam alojadas
internamente a um lago (p.ex.: furos), é necesséria a extragao dos lagos da “feature”
no sélido (Heuristica 1), bem como do(s) lago(s) internos restantes. Para isto, foi
criada a seguinie Heuristica:

Heuristica 3 Todos os lagos que ndo fazem fronteire com nenhum lago devem ser
retirados das fun¢ées de modelagem do sélido.

A aplicagao desta heuristica é exemplificada na Figura 4.9.

Apesar de nao ter sido a intengao inicial tornar este extrator o definitivo do sistema
CAPP, j4 se estuda a possibilidade de acrescentar mais algumas Heuristicas para exiragao,
tornando-o mais genérico para satisfazer as necessidades do sistema. A velocidade de
extracio de “features” serla muito maior do que a da solugdo que trabalha em cima de
operagoes booleanas do Modelador de Sélidos Didético desenvolvido no LAS-EPUSP.
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/v / Aplicacao da

- . Heuristica 1

Figura 4.7: Extragao incompleta de uma “feature”

Aplicacao da Heuristica 2

Figura 4.8: Extragio completa da “feature” do exemplo da figura anterior.
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Figura 4.9: Exemplo de aplicagao da Heuristica 3.



Capitulo 5

Escalonamento Automatico de
“Features”

Neste capitulo, discutiremos detalhadamente o médulo de escalonamento automatico de
“features”. O capitulo foi dividido em segoes que contém em cada uma um dos sub-
médulos que compde o sistema e que foram apresentados préviamente na segio 3.2. Esta
discussao vai desde as especificagdes de cada médulo até sua implementagao.

5.1 Arquivo de “Features”

O arquivo de “features” € um arquivo que conterém nomes de arquivos que correspondem
as “features”! que compdem a nossa base de dados, definindo o conjunto de “features”
que o sistema conhece e pode fabricar. O escalonador de “features” seleciona uma “fea-
ture” por vez e envia ao reconhecedor automaético de “features” de manejra que ele possa

comparar esta “feature” com o sélido que estd sendo manipulado.

O Arguivo de “features” foi implementado de forma que as “features” modeladas
seguem um dos trés modos descritos acima. Estas “features” sio ditas “features” para
reconhecimento, j4 que elas sio usadas pelo sistema para a comparagio com o sélido
com o qual se pretende planejar o processo. A cada uma destas “features” para re-
conhecimento ¢ associada uma segunda “feature” dita inversa da “feature” , que
¢é exatamente o volume que a “feature” para reconhecimento ocupa no sélido. Es-
te volume nos ¢é diil, quando “retirar-se” as “features” do sélido, utilizando Operagées
Booleanas. Na versao atual, este sistema trabalha com um extrator de “features” que é
descrito nas segbes 3.3 e 4.6, nio havendo a necessidade do célculo da “feature” inversa.
Porém, como este extrator nao é totalmente genérico, é necessario estudar uma maneira
eficiente de torna-lo utilizivel para qualquer método. Uma solugao baseada no conceito
de “features” inversas tamém devera ser estudado.

1Modeladas segundo fungbes de modelagem. Veja secdes 2.4 e 2.5.

42
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Quando se rcaliza o reconhecimento de “features” as caracteristicas geométricas de
uma “feature” reconhecida sio coletadas. Assim, a unicidade de cada “feature” encontra-
da no sélido é garanlida, mesmo que existam “features” do mesmo tipo e com as mesmas
caracieristicas geométricas em posigdes diferentes no sélido. Por outro lado, tendo as
caracteristicas geométricas da “feature” encontrada disponiveis, bem como o modelo da
“feature” inversa, pode-se determinar caracteristicas geométricas da inversa da “featu-
re” correspondente’.

Além dos dois tipos de “features” descritos acima é conveniente que esteja associado
bl

a cada uma das “features” do Arquive de “features” um nome para que se facilitern futuras

andlises sobre o sélido modelado.

Assim, podemos dizer que o arquivo de “features” é composto por nomes de ar-
quivos que contém as “features” modeladas. Cada um destes arquivos conterém uma
“feature” modelada e pode assim ser utilizado diretamente pelo Reconhecedor Automdtico
de “features”.

O nimero de “features” armazenadas no Arquivo de “features” influencia direta-
mente sobre a velocidade do Escalonador Automdtico de “features”, j4 que para cada
nivel da Arvore de “features” sdo realizadas no minimo tantas comparagoes quantas fo-
rem o nimero “features” presentes no Arquivo de “features”. Entretanto, quanto maior o
ntimero de “features” no Arquivo de “features” mais genérico serd o sistema. Este trabalho
nio objetiva encontrar um Arguivo de “features ” que torne o sistema totalmente genérico.
A procura por tal conjunto de “features” merece a atengao de um trabalho préprio. A es-
trutura deste arquivo é aqui estudada ja que este é um médulo integrante do Escalonador
Automdtico de “features”, de modo que seu funcionamento possa ser avaliado.

5.2 Arvore de “Features”

5.2.1 Estrutura e Nomenclatura da Arvore Binaria

Na concepgao de uma 4rvore binaria, existem trés ponteiros bésicos: left e right que sao
“flhos” de um né e pai, que é o né acima de um determinado “filho”. Assim, o ponteiro
pai terd um ponteiro para um “filho” left e outro para um “filho” right, enquanto cada
um destes dois tipos de “filhos” terd um ponteiro apontando para pai.

A Arvore de “features” nao serd bindria na concepgao exata do termo. Isto porque
apesar de cada né da Arvore de “features” ter apenas dois “filhos” diretos, podera ter
como “filhos indiretos” tantos nés quantas forem as “features” independentes e aninhadas
associadas a este no.

Deste modo, o “filho” left de um né indicara que descemos um nivel, para um filho

?Este algoritmo ndo foi implementado neste trabalho, jé que sua complexidade exigiria um trabalho
exclusivo para sua execugdo.
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direto. O né que estiver ligado ao “filho” left por um ponteiro right, seré considerado um
“rmao” do né left, estando no mesmo nivel de extragao de “features” e tendo por pai o
mesmo né de left, o mesmo acontecendo com todos os outros nés ligados sucessivamente
por ponieiros right.

5.2.2 Operadores Basicos para Construgio de uma Arvore Bindria

A consirugdo de uma arvore binéria segundo um certo critério necessita da especificagao
de alguns operadores bésicos. Com base nestes operadores podemos construir uma drvore
binaria, nos moldes descritos acima, seja qual for o critério adotado. Estes operadores
$a0:

1. Cria todos os filhos segundo um certo Critério: dado um nd da arvore, este

operador procura todos os filhos deste né segundo um certo critério definido pelo
usuario e insere os filhos encontrados na arvore.

Parametros ::= PAI (n6)
Critério (fungéo)

Devolve ::= Primeiro filho a esquerda
se NULL, nédo tem filho

9 Busca Primeiro Filho: dado um né, verifica se ele possui filho, e retorna o primeiro
filho 3 esquerda (caminha um nivel abaixo). obs: mole que esta segunda operagao
estd inclusa na primeira.

Parametros ::= PAI (no)

Devolve ::= Primeiro filho a esquerda
se NULL, nio tem filho

3. Busca Primeiro Irmao: dado um n$, verifica se ele possui um irmao a direita, e
retorna o né associado ao primeiro irméo a direita.

Parametros ::= noé

Devolve 1= Primeiro irmao a direita
se NULL, nao tem filho

4. Busca o Pai: dado um né, verifica se ele possui pai e retorna o né associado a ele.
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Parametros ::= no

Devolve ::= Pai

se NULL, ndo tem pai

O algoritmo de construgdo da drvore bindria fica:

Algoritmo(construcac da arvore binaria}
{
possivel = true
while {possivel == true)
{
{cria todos os filhos)
if (existe filho)
{busca primeiro filho)
else

{
if {existe irmae)
(busca primeiro irmao)
else

{

(assuma que nao existe irmao)

while ((existe pai) e (nac existe irmao))
(busca pai)

if {existe pai}
(busca primeire irmao)

else
(possivel = false)}

Até aqui, sé se discutiu a construgdo da irvore em si, sem se entrar em detalhes
de como serio os critérios para a insercao dos nés. Para o caso da Arvore de “features”,
estes critérios serdo estabelecidos na préxima sub-segao.

Note que o algoritmo aproveita o fato de que a drvore desce de nivel sempre pelo lado
esquerdo (filho) para realizar a sequenciagao de “features” da esquerda para a direita, ou
seja, o primeiro ramo da arvore que desce até o dltimo nivel é o esquerdo. Assim, a arvore
seré construida da esquerda para a direita, ramo a ramo. Note ainda que apenas no médulo
Cria todos os filhos segundo um critério serd realizada insergao de nés, facilitando o
controle de construgio da arvore. Ainda é importante ressaltar que, devido a este modulo,
existe uma ordenagio implicita dos filhos de um determinado né, estando ordenados
da “esquerda para a direita”. Esta ordenagdo se deve ao fato de que, o primeiro filho
encontrado é associado ao né “left” do pai, o segundo é associado ao né “right” do
primeiro, o terceiro é associado ao né “right” do segundo e assim por diante.

Outro fato relevante é que quando mencionamos critério, queremos dizer aplicagao
especifica. Na verdade, para cada operador podemos ter algum critério associado a
arvore que desejamos construir. Deve-se notar também que os critérios mais importantes
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da irvore devera estar associado ao operador cria todos 0s filhos segundo um critério, ja
que ¢ ai que inserimos noés.

5.2.3 Critérios para construgao da Arvore de “Features”
Critério associade ao Operador “Cria todos os Filhos segundo um Critério”

O critério principal para construgdo da Arvore de “features”, como dito anteriormente,
esté contido no operador Cria todos os filhos segundo uwm critério. Este critério é composto
de duas partes basicas:

1. reconhecer a “feature” no séhido;

9. marcé-la para procurar por outra do mesmo tipo.

Cada um dos médulos necessirios para estabelecer os critérios é apresentado no
seguinte algoritmo:

Operader{cria todos os filhos segundo um criterio)

{
(inicializa o arquivo de ‘‘festures’’)
while (nac e a ultima)
{
(retire a proxima ‘‘feature’’)
if (nao tem mais ®‘feature’?)
(indica que e a ultima)
else
{
while (reconhece a ‘‘feature’’ no selido)
{
(insira a ‘feature’? mo no?’)
(marque as faces da ‘‘feature’’)

}

Cada um dos médulos presentes no algoritmo é descrito abaixo:

1. Inicializa Arquivo de “features”: toda vez que for iniciada a procura por todos
os filhos, todo arquivo deve ser percorrido, assim, deve ser inicializado;

9 Retira Préxima “feature” do Arquivo: toda vez que uma “feature” for retirada
do arquivo e for usada para o reconhecimento, a préxima “feature” do arquivo deve
ser indicada para que possamos procurar por ela em apds o reconhecimento da
anterior. Se nao existir mais “feature” no arquivo, deve retornar um valor NULL,
para que o algoritmo seja encerrado;
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3. Reconhece: este médulo indica o uso do Reconhecedor Automdlico de “features”,

que devolve a “feature” reconhecida com suas caracteristicas geométricas ou um
valor que indica que esta “feature” nao existe no solido;

Insere N6 na Arvore: algoritmo para inserir um né (ou seja, uma “feature”) na
Arvore de “features”;

Marca Faces da “feature” encontrada: E possivel que tenhamos mais de u-
ma “feature” do mesmo iipo em um sdlido. Cada uma destas “features” deve ser
tratada de modo independente, e colocada na érvore separadamente. O Reconhe-
cedor Automdtico de “features” néo inicia uma comparagao entre uma “feature” e
um sélido por nenhuma face preferencial, mas pode ficar “viciado”, € a procura por
sucessivas “features” de mesmo tipo sem alguma precaugao pode levar o algoritmo
a sempre ficar reconhecendo a mesma “feature”, sem sair do lugar. Para evitar 1sso,
deve-se existir um algoritmo que denominamos de “faces marcadas”. Este algoritmo
«marca” as faces do sélido que fazem parte da “feature”, nao permitindo assim que
uma “feature” ja reconhecida seja reconhecida novamente. Este algoritmo sera aqui
implementado utilizando-se o fato que o reconhecedor armazena as faces da “featu-
re” durante o reconhecimento. Assim, as faces que ja foram reconhecidas uma vez
sdo automéiticamente excluidas da busca.

Critério Associado ao Operador “Busca Primeiro filho”

Devemos lembrar que a busca pelo primeiro filho corresponde a descermos um nivel na
”

Arvore de “features”.Quando descemos de nivel, a “feature” para a qual descemos deve

ser retirada do sélido a fim de que possamos encontrar seus filhos.

Operador{busca primeire filhe}

{

possui = (nao possuni filho)
(pega no’ left)
if ({no’ laft) <> (nac poseuni filho))
{
(desca para o no’)
(retire a feature do solide)
possui = (possui no’)
}

retorna (possui)

Como pode ser notado, a natureza das operagoes envolvidas no algoritmo é de grande

simplicidade, chegando a ser, na maioria dos casos, uma mera manipulagio de ponteiros.
Apenas o médulo Retire a feature do sdlido deverd ser estudado com mais cuidado, ja
que ali estarido envolvidas operagdes booleanas, o que pode representar jé neste nivel uma
necessidade de interfacear o Reconhecedor Automdtico de “features” com o modelador de
sélidos. Porém, estes aspectos serdo abordados na fase de implementagao.
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Critério Associado ao Operador “Busca Primeiro Irmao”

Assim como no operador anterior o critério associado aqui tem relagdo com colocar ou
retirar “features” do sélido conforme andamos pela drvore. Quando fazemos a busca por
um irméo de um né, devemos lembrar de operar sobre a “feature” que é deixada para tras
de forma a recolocé-la no solido. Isto porque a “feature” irma deverd ter como um dos
filhos a que foi deixada para tras. Além disto, a “feature” para a qual caminhamos deve
ser retirada do sélido. Um possivel algoritmo para este operador é apresentado abaixo.

Operador(busca primeiro irmac}

{

possui = (nao possui ne’)

(pega no’ right}

if ({no’ right} <> (nao possui irmao})

{
(cologue a feature no solido)
(caminhe para o irmao}
(retire a feature do solido)
possui = (possui irmao)

}

retorna (possui)

Critério Associado ao Operador “Busca o pai”

O critério é anslogo ao usado nos dois operadores anteriores, sendo que aqui, quando
subimos de nivel, devemos recolocar a “feature” no sélido.

Operador(busca o pai)
{
possui = (nao possui pai)
(pega no’ pai)
if ((no’ pai) <> (nao possui pai)}
{
(coloque a feature no solido)
(caminha para o pai)
possui = (possui pai)
}

retorna (possui)

5.3 Estrutura de Avaliagdo de Relacionamentos

O sub-médulo Estrutura de Avaliagio de Relacionamentos tem por objetivo criar uma
estrutura de dados que mostre claramente o posicionamento de cada “feature” em relagao
3s demais no sélido estudado (9u seja, se a “feature” estd abaixo, acima ou no mesmo
nivel das outras “features” da Arvore de “features”). Este posicionamento nos permitird
determinar se estas “features” sdo independentes, aninhadas ou interferentes.
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5.3.1 Estrutura e Nomenclatura

A Estruture de Avaliagio de Relacionamentos possuird dois tipos de nds:

1. “feature” de referéncia: é a “feature” emrelagio a qual queremos saber a posigao
relativa das outras “features” contidas no sélido. Assim, sabendo as posigbes de cada
“feature” em relagio a todas as outras, poderemos determinar, por meio de regras,
qual o relacionamento entre as “features”. Teremos portanto “features” abaixo,
acima e no mesmo nivel que a “feature” de referencia.

9. “feature” de posicao: para cada “feature” de referéncia, deveremos ter todas as
“features” do sélido a ela associdas. As “features” de posigao serdo estas “features”
associadas. Elas serio as “features” do sélido que poderdo estar acima, abaixo ou
no mesmo nivel da “feature” de referéncia.

Assim, os campos associados a “feature” de referéncia sao:

¢ “feature” de referéncia;

e mesmo nivel: indicard uma lista de “features” que foram encontradas no mesmo
rs
nivel que a “feature” de referéncia na Arvore de “features”

e acima: indicard uma lista de “features” que foram encontradas acima da “feature”
de referéncia na Arvore de “features”;

o abaixo: indicars uma lista de “features” que foram encontradas abaixo da “feature”
rd
de referéncia na Arvore de “features”;

e préxima: indica a proxima “feature” de referéncia na estrutura;

e anterior: indica a “feature” de referéncia anterior na estrutura.
E os campos associados & “feature” de posigao sao:

o “feature” de posigao;

e préxima: indica a proxima “feature” de posigdo numa lista de “features”, que
pode indicar acima, abaixo ou mesmo nivel;

e anterior: indica a “feature” de posigao anterior, numa lista de “features”, que
pode indicar acima, abaixo ou mesmo nivel.
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5.3.2 Operadores Bésicos para Construgao

A construgio da Estrutura de Avaliagio de Relacionamentos necessita da definigao de
alguns operadores basicos. Estes operadores sao:

Procura por todos os descendentes: Saindo de uma “feature” de referéncia
qualquer, percorre toda a Arvore de “features” para baixo daquele nivel da “featu-
re” de referéncia, incluindo todas as “features” encontradas (nos nés que percorre)
na lista de “features” abaixo.

. Id
Procura por todos os ascendentes: “subindo” a Arvore de “features” por su-
cessivos ponleiros pai, inclui todas as “features”encontradas ne lista de “features”

acima.

Procura por todos os irmaos: percorre o nivel que a “feature” de referéncia se
encontra na Arvore de “features”, incluindo todas as “features” encontradas na lista
de “features” de mesmo nivel.

Caminha para cima: “sobe” um nivel na Arvore de “features”.
Caminha para o lado: caminha para o irmao right.

Caminha para baixo: caminha para o irmao left.

Tendo em vista estes operadores, o algoritmo para a construgo da Estruture de

Avaliagio de Relacionamentos fica:

Algoritmo(Estrutura de Avaliacao de Relacionamentos)

{

(pegue a primeira Teature)
while (nao acabou a arvore de features)
{
if (feature encontrada nac esta na estrutura)
{coloque em no da lista de feat. de referencia)
{procura por todos os descendentes)
(procura por todos os ascendentes)
(procura por todos no mesmo nivel)
(caminha para baixo)
if (impossivel caminhar para baixe)
{
(caminha para ¢ lado)
if (impossivel caminhar para o lado)
{
(admita que seja possivel caminhar para cima)
while ((impossivel caminhar para o lado) e
(e possivel caminhar para cima ) }
{
{caminhe para cima}
$f (impossivel caminhar para cima)
{axvore de features acabou)
else
{caminha para o lado)
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O algoritmo percorre toda a Arvore de “features”, comegando pela primeira “featu-
re” que foi encontrada, primeiro estudando o relacionamento de cada “feature” da arvore
com a primeira retirada do sélido, depois “descendo” para todas que estdo abaixo dela.
Quando ja nao existe mais nenhuma “feature” abaixo dela, que ja nao tenha sido percorri-
da e seu relacionamento estudado, passa entao para a irma a direita da primeira “feature”
e Tepete o processo, até que todas as “features” do sélido tenham {ido seu relacionamento
estudado.

Note que a &rvore é “atravessada” da esquerda para a direita, primeiro percorrendo
todas as “features” possiveis & esquerda, passando entao para a primeira irma possivel, e
subindo de acordo com o fim dos sucessivos niveis de “features”. Devemos ressaltar que o
que entendemos por atravessar a arvore neste algoritmo é no sentido de passar por todas
as “features” da arvore, de forma a estabelecer o relacionamento para todas as outras. Os
algoritmos especificos para encontrar as “features” de relacionamento serao apresentados
na préxima segao.

Operador Procura por todos os Descendentes

Este operador percorre toda a arvore abaixo de um determinado n6 {que serd a “feature”
de referéncia), retornando as “features” pelas quais vai passando. Estas “features” sdo
inseridas na Estrutura de Avaliagdo de Relacionamentos, na posigao de abaixo, referente
3 “feature” de referéncia. Um possivel algoritmo para este operador é apresentado abaixo.
Sua entrada é o né de referéncia, de onde parte e para onde deverd voltar.

Operadox(procura poxr todos os descendentes)
{
(caminha para baixoe)
while (feature diferente da feature de referencia)
{
if (feature nao esta na lista de abaixo)
(coloque feature na lista de abaixo)
(caminhe para baixo)
if (impossivel caminhaxr para baixo)
{
(caminhe para o lado)
if (impossivel caminhar para o lado)
{
(admita que e possivel caminhar para cima)
while ({impossivel caminhar para o lado) e
(possivel caminhar para cima) )
{
(caminha para cima)
if (e impossivel ceminhar para cima)}
(chegou ao no de referencia)
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else
(caminha para o lado)

Note que a partir do operador caminha para baixo, o algoritmo ¢ 0 mesmo u-
tilizado para o algoritmo de construgho da Estrutura de Avaliagdo de Relacionamentos,
com a diferenga que o ponto de parada ¢ diferente (neste algoritmo, o ponto de parada
¢ a “feature” de referéncia). Com isto, posteriormente o algoritmo dos dois podera ser
basicamente o mesmo, se executadas as devidas adaptagdes para que sirva em ambos os
casos. Esta adaptacdo serd vista na fase de implementagao.

Operador Busca Por Todos os Ascendentes

Este operador percorre toda a Arvore de “features”, partindo da “feature” de referéncia,
para “cima”, ou seja, percorre todas as “features” que foram retiradas apés a sua retirada.
Para isto, basta que percorra todos os pais acima dela, sucessivamente. Um possivel
algoritmo para este operador é mostrado abaixo:

Operador(busca por todos os ascendentes)

{
(caminha para cima)
while (possivel caminhar para cima)
{
if (nac esta na lista de acima)
(cologue na lista de acima)
(caminha para cima)

Operador Procura por Todos os Irmaos

Este operador tem por fungdo percorrer o nivel em que s¢ encontra a “feature” de re-
feréncia, a fim de colocar na lista de mesmo nivel as “features” encontradas. Um
algoritmo para este operador € apresentado abaixo:

Operador{procura por todos of irmaos)

(caminha para cima)
(caminha para baize)
while (nao acabarem as features de mesmo nivel)
{
if (nao e a feature de referencia)

i
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if {nao esta na lista de mesmo mivel)
{coloque na lista de mesmo nivel)

3

(caminha para o lado)

if (nao e possivel caminhar para o lade)
(acabaram as features de mesmo nivel)

Note que a operagio de subir para o nivel imediatamente superior, seguida da ope-
ragao de descer é um dos modos possveis de garantir que todas as “features” de um mesmo
nivel sejam colocadas na lista de “features” de mesmo nivel. E claro que passaremos
pela “feature” de referéncia, mas um teste simples fard com que ela nao seja inclusa na
lista® *.

5.4 Relatérios de Saida

Os relatérios® de saida tem por fungéo mostrar como cada uma das estruturas foi cns-
truida ao longo da operagdo do sistema. Estes relatérios tiveram uma fungao extrema-
mente importante na implementagéo do sistema, j4 que seu comportamento podia ser
completamente analisado. Para o usuario podem ter a fungéo de verificar passo a pas-
s6 o desenvolvimento do escalonamento, podendo mudar algum parametro de interesse
baseado nestas observagoes.

Nesta fase siao gerados relatérios para a arvore de “features” e para a lista bi-ligada,
uma estrutura intermediéria que é utilizada para verificar a existéncia de uma determinada
“feature” na arvore, para que nao seja inserida como uma “feature” diferente na arvore.

5.5 Implementacgao

Para que se realizasse a implementagio do Sistema de Escalonamento Automdtico de
“features”, em primeiro lugar houve a definigao de como o Sistema seria modularizado.
A modularizacio permite uma clara separagdo das vérias fungdes envolvidas, além de
facilitar a debugagio e testes, ja que cada médulo pode ser debugado/testado indepen-
dentemente, facilitando a descoberta de erros de implementagio local de cada médulo,
bem como reduzindo (praticamente eliminando) erros de integragao do Sistema.

2 As operagdes de “caminhar” envolvem apenas uma tomada de sentido simples para percorrer a arvore,
sempre trabalhando apenas com um dos trés ponteiros definidos para os nés da Arvore de “features”,
nio merecendo atengio especial

4Todos os algoritmos aqui apresentados ficaram sujeitos a alteragdes durante a fase de implementagao.

SInicialmente estes relatérios teriam fungio de guardar os relacionamentos obtidos para que fossem
utilizados pelos médulos seguintes do sistema, Porém, com a especificagio dos médulos seguintes, esta
fungdo se mostrou pouco eficiente.
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Assim, podemos dizer que o Sistema foi dividido nos seguintes modulos:

1. “Argfeat.c”, que contém as fungoes responsaveis por gerenciar o Arquivo de “featu-
res”,

rs
9. “Arvfeat.c”, que contém as fungdes responsaveis por construir a Arvore de “featu-

”,

res’,

3. “Organiza.c”, que contém as fungoes responsaveis por construir a Esiruiure de A-
valiagdo dc Relacionamentos;

A cada um destes arquivos “.c” associamos um arquivo “header” (“.h"), que contém
os protétipos de cada fungao desenvolvida no arquivo “.c”, bem como a declaragao das
varidveis externas, constantes, etc.., necessirias para o desenvolvimento do médulo.

Em linhas gerais, o sistema foi idealizado para funcionar do seguinte modo: cada uma
das “features” do Arquivo de “features” serd modelada segundo fungdes de modelagem.
Existira um arquivo denominado “argfeat.nos” que conterd os nomes dos arquivos aonde se
encontram os nomes dos arquivos que contém cada uma das “features” que o sistermna pode
reconhecer modelada. Para cada uma das “features” do Arquivo de “features” o moédulo
Arvore de “features” verificard se ela existe ou néo no sélido, e procederd conforme o
estabelecido nas secdes que tratam da organizagao do projeto. Para cada um dos nés da
4rvore existird um arquivo associado que armazenara, por meio de fungdes de modelagem,
o sélido modelado, apds a extragdo da respectiva “feature” que é associada ao né. Além
disto, associa-se o nome da “feature” e outros fatores que serdo descritos posteriormente.
A seguir é montada a Estrutura de Avaliagao de Relacionamentos, com base na arvore e
em uma lista de “features” que é criada quando se constrdi a Arvore de “features”. Por
dltimo, é criddo o relatério de saida.

5.5.1 Moédulo de Arvore de “Features”

Quando foi discutida a organizagdo do projeto, havia ficado estabelecido que quando cons-
truissemos a arvore, no momento em que, por exemplo, subissemos um nivel, a “feature”
do n6 de onde partissemos deveria ser recolocada no sélido a fim de que fosse reconstruido
o sélido como ele era antes de se extrair a “feature”. Outras operagoes para percorrer a
4rvore também exigiam este tipo de manipulagao, de célculo de inversas, retirar e extrair
“features”, etc.... No entanto, a nivel de implementacéo foi realizada uma otimizagao de
modo que o algoritmo ficasse mais rapido e eficiente.

Esta otimizagio baseou-se no seguinte procedimento: toda vez que uma “feature”
for reconhecida num sélido, ela é adicionada a um né correspondente da irvore. B extraida
do sélido automaticamente, e o sélido resultante é gravado num arquivo, que é associado
a0 né da arvore. Como o extrator é baseado em fungdes de modelagem, cada um destes
sélidos sera gravado com base em fungdes de modelagem.
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Note que para cada né da Arvore de “features” temos um determinado sélido, que
é “filho” do solido original, ou seja, que é o sélido original menos as “features” que estao
associadas aos nés que estio acima do né estudado. Este sélido representa completamente
o estado atual da arvore e suprime-se uma série de operagbes para reconstruir o solido.
Assim, s6 é necessiria uma operagao, para cada nd, de extragao de “feature”, o que
economiza muito tempo computacional. Cada sélido criado a partir da extragido de uma
“feature” (que é associada a um né) sera associado ao né da “feature” extraida em questao.

Estando explicadas estas alteragoes vamos agora passar a estudar as estruturas en-
volvidas na construgio da Arvore de “features”, o que esclarecerd qualquer outra duvida.

Estruturas Envolvidas na Implementagéo da Arvore de “features”

Sio duas as estruturas que deverao ser analisadas nesta segdo: NoArvore e lista. A
estrutura NoArvore representa o né da Arvore de “features” e a estrutura lista repre-
senta um né de uma lista bi-ligada que contém uma determinada “feature” encontrada
no sélido (lembre-se que uma mesma “feature” pode ser associada a diversos nés de uma

mesma Arvore de “features”).

A estrutura NoArvore é implementada da seguinte maneira:

typedef struct BedArvere 30 ;

struct NolArvore
i
1] xleft,
*right,
*pai ;
char NomeDaFeaturei12],
Feature[12],
Selido[12],
int Cubelgual,
VerificaBeuristica,
Ferxamenta,
NumercFacesFeature ;
face #FacesFeature ;
COMP +arestas ;

Cada um dos campos desta estrutura é discutido abaixo:

e NO *left: este campo é um ponteiro que aponta para o fitho do né a que este
ponteiro pertence;

e NO *right: este campo é um ponteiro que aponta para o irmao do né a que este
ponteiro pertence;

¢ NO *pai: este campo é um ponteiro que aponta para o pai do né a que este ponteiro
pertence;
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e char NomeDaFeature[12]: este campo € uma “string” de 12 caracteres que guar-
da o tipo da “feature” que estd associada ao né que a string pertence. Se um tipo
de “feature” é encontrada no sélido, este campo € preenchido com seu none;

e char Feature[12]: este campo guarda o nome do arquivo correspondente a “fe-
ature” encontrada no sélido. Devemos lembrar que uma mesma “feature” pode
ser associada a diversos nés da arvore. Assim, varios nés poderdo ter um mesmo
conteido neste campo;

o char Solido[12]: Quando uma “feature” ¢ retirada de um sélido, um novo sélido é
criado. Este sélido deve ser armazenado em um arquivo que receberd um determi-
nado nome. O nome deste arquivo é armazenado neste campo. O sélido criado aqui
serd utilizado quando voltarmos a este né e formos procurar por seus filhos. Deve-
mos lembrar que cada né da arvore corresponde a um diferente estado do sélido,
portanto nunca haverao campos deste tipo com o mesmo contetido;

e int Cubolgual: toda vez que um nd é criado, este campo recebe um valor 0.
Quando o sélido que corresponde ao né é igual a um cubo, ou seja, atingimos um
ponto de parada, este campo recebe o nimero de comparacoes que o reconhecedor
realizou para identificar o cubo;

o VerificaHeuristica: no préximo capitulo, iremos demonstrar a aplicagdo de uma
heurfstica para racionalizar a construgéo da 4rvore. Deste modo, este campo se fard
necessario para se identificar a quais nés foi aplicada esta heuristica. Este campo
serve para que fagamos esta identificagao;

e Ferramenta: com base nos valores encontrados no campo “arestas”, pode-se cal-
cular uma broca para desbaste de “features” de superficie retangular. Este campo
serve para guardar esta ferramenta. No futuro, quando integrado com um sistema
TG, este campo deverd ser modificado;

o NiimeroFacesFeature e *facesFeature: estes dois campos juntos tem a fungao
de guardar o mimero de faces que a “feature” do né tem e quais sdo estas faces no
sélido modelado. Assim, ndo é necessario se utilizar o reconhecedor para comparar
“features”, o que economiza um grande tempo computacional;

e arestas: guarda o valor de arestas no 3 eixos da “feature”, de tal forma que pos-
samos calcular as ferramentas, niimero de passes, etc.... Deve-se ressaltar que este
trabalho foi limitado a “features” retangulares.

Ainda ha mais uma estrutura a ser analisada (apesar desta estrutura ter nada a ver
com a érvore em si, ela é montada durante a construgéo da arvore, dai ela ser analisada
aqui). Esta estrutura tem por fungao armazenar cada uma das “features” encontradas no
sélido apenas uma vez (mesmo que aparega varias vezes). Este armazenamento facilitara
a procura por “features” iguais associdas a diferentes nés da Arvore de “features”. Esta
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lista evitard um grande trabalho computacional que é o de procurar por “features” iguais
I
na Arvere de “features”.

A estrutura é a seguinte:

typedef struct lista IBV ;

struct lista

{

IRV

*prox,
*ant ;

char Feature[12] ;
int
face *FacesFeature ;

FumeroFacesFeature ;

INV *prox: aponta para o préximo né da lista bi-ligada;
INV *ant: aponta para o né anterior da lista bi-ligada;

char Feature[12]: Andlogo ao campo Feature[12] na estrutura anterior, toda vez
que uma “feature” é encontrada no sélido é checado se ela j& existe na arvore em
outro né. Se existir, entdo associa ao né da arvore este arquivo ja existente. Este
campo, na verdade, existe apenas para identificar a “feature” em questdo, j& que a
comparagao propriamente dita fica a cargo dos dois campos descritos abaixo;

NumeroFacesFeature e facesfeature: estes campos é onde se faz efetivamente a
comparagao. Compara-se o conteido do resultado da comparagéo do reconhecedor
com o contetido de cada um destes campos.

5.5.2 Moédulo de Estrutura de Avaliagdo de Relacionamentos

Este médulo foi implementado exatamente como foi planejado na organizagao do projeto.

Estruturas Principais

A Estrutura de Avaliagio de Relacionamentos é construida a partir de dois tipos de
estruturas: relacoes e nivel. A estrutura relacoes guarda uma “feature” da qual se quer
saber qual estd abaixo, acima ou no mesmo nivel em relagio a ela mesma. A estrutura
nivel guarda uma “feature” que estd acima, abaixo ou no mesmo nivel de uma “feature”
contida em um né do tipo relacoes.

A estrutura relacoes é apresentada abaixo:

typedef struct relacoes REL ;
typedef struct nivel LEVEL ;

struct relacoes

{
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REL *ant,
*prox ;
LEVEL #*mesmo,
*acima,
*abaixo ;
char featurel12] ;

e REL *ant: aponta para um nd que contém uma “feature” analisada anteriormente
3 “feature” contida neste né;

e REL *prox: aponia para um né que contém uma “feature” analisada posterior-
mente 3 “feature” contida neste né;

e LEVEL *mesmo: aponta para o primeiro né de uma lista que contém todas as
“features” no mesmo nivel da “feature” contida neste né. Note que este né é do
tipo struct nivel, bem como o serao os dois préximos campos. O que diferencia
cada n6 é o ponteiro do tipo struct nivel que aponta para o primeiro né da lista;

e LEVEL *acima: aponta para o primeiro né de uma lista que contém todas as
“features” acima da “feature” contida neste néd;

e LEVEL *abaixo: aponta para o primeiro né de uma lista que contém todas as
“features” abaixo da “feature” contida meste no;

e char feature[12]: contém o nome do arquivo da inversa da “feature” correspon-
dente a este nd.

A estrutura de nivel é apresentada abaixo:

struct nivel

{
LEVEL #proxima,
*anterior j
REL *ant ;
char feature[12] ;
}

LEVEL *anterior: aponta para “feature” anterior na lista de “features” de um
determinado nivel;

¢ LEVEL *proxima: aponta para a préxima “feature” na lista de “features” de um
determinado nivel;

e REL *ant: o primeiro né da lista de “features” de um determinado nivel deverd
apontar para o né que tem o né do tipo struct relacoes da “feature” que queremos
analisar;

e char feature[12]: contém o nome do arquivo gque contém a inversa da “feature”
da “feature relacionada ao nd;



Capitulo 6

Selegiao do Processo de Usinagem

Este capitulo destina-se a demonstrar como o processo de usinagem é gerado. Descrevem-
se as heuristicas envolvidas, desde a escolha de ferramentas e maquinas até os parametros
do processo como velocidade de corte, profundidade de corte, etc.... Primeiro é dada
uma pequena introdugao ao conceito de heuristicas. A seguir, é apresentada a primeira
heuristica, a de volume de “features”, que leva a um novo algoritmo para construgao

da arvore de “features”. Introduz-se entdo as heuristicas para sequéncia de usinagem €
processo de usinagem.

6.1 O Conceito de Heuristica

Heuristicas sao critérios, métodos ou principios para decidir qual entre varias alternativas
de agdo serd a mais efetiva para se chegar a um determinado resultado. Elas representam
um compromisso entre dois requisitos: a necessidade de tornar tal critério simples e ao
mesmo tempo o desejo de vé-las optar corretamente entre boas e mas opgdes [Pearl 84).

Como exemplo pode-se citar um mestre de xadrez que tem como opgao varios mo-
vimentos. Ele escolherd um movimento que lhe dé uma posigio que parega mais forte do
que as outras opgdes. Este critério de determinar o movimento mais forte é mais simples
do que determinar o movimento que lhe daria um “checkmate”. O fato de nem sempre
os grandes mestres ganharem mostra que suas heuristicas nio podem garantir a selegao
do movimento mais efetivo.

’

£ a natureza de boas heuristicas que indiquem de modo simples qual das opgdes
devem ser escolhidas e que nio garantam necessariamente o caminho mais efetivo, mas
que o fagam em uma frequéncia suficiente.

59
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6.2 Novo Algoritmo para a Arvore de “Features”

O algoritmo para construgao da arvore de “features”, como foi proposto e implementado,
gera lodas as sequéncias de usinagem possiveis para um determinado sélido, mas levaria
a um resultado explosivo. Para um sélido composto de n “features” independentes, é
gerado o seguinte nimero de nos:

1 1 1 1
Nnoszn!(—+_+—+'

ol a2 "+m)

Assim, para 10 “features” independentes, sao 9.900.000 nés gerados!

Deste modo, verificou-se a necessidade de se obter uma alternativa mais racional.
Esta alternativa baseou-se na seguinte heuristica:

Heuristica 4 Em um determinado nivel da drvere de “features”, escolher pare criar
todos os filhos a “feature” de maior volume.

Esta heuristica permite que uma menor troca de ferramentas (j& que se houverem
conjuntos de “features” interferentes ela escolherd a “feature” de maior volume € gue
muitas vezes deveré ter uma inica ferramenta associada) e a redugdo dréstica do mimero
de nés da arvore. A aplicagio desta heuristica leva ao seguinte algoritmo para construgao
da rvore de “features”:

tlgoritmo(Hovo Algoritmo Para a Arvore de ‘‘Features’?)
{
verifica heuristica = ok
(va para inicio da arvore -~ head)
(crie todos os filhos do primeiro mo )
while (solido nao e cubo) e {heuristica == heuristica ok)
{
aurilio = auxilio arvore = (£ilho do no’ head)
if (verifica heuristica == ok}
{
auxilio = auxilic arvore
(crie todos os filhos do no auxilic arvore)
avxilio = (filho de auxilio)
}

verifica heuristica = heuristica maior volume (no)

Este algoritmo contrdi apenas um dos ramos da arvore, e fornece o seguinte numero
de nés (para um sélido de n “features” independentes):

Nes=n+(n—-1)+n-2)+(n=-3)+-+1

Assim, para 10 “features” independentes, ocorre a criagao de 55 nés!



CAPITULO 6. SE_LE(}AO DO PROCESSO DE USINAGEM 61

RESULTADOS

Numero de nos na arvere

2000

1600 -

1200

800

400

e B | sl IR = 7 |

0 1
0 2 4 6 8 10
Numero de features independentes no sol.

Figura 6.1: Desempenho do sub-médulo Arvore de “Features”.

Deve-se enfatizar que todos os outros sub-médulos e algoritmos do médulo de esca-
lonamento continuam a atuar sem modificagéo. O desemnpenho dos dois algoritmos para
construgio da drvore pode ser observado pela figura 6.1. A mudanga da construgdo da
4rvore leva a que os relacionamentos sejam indicados segundo as seguintes heuristicas:

Heuristica 5 Para que se determinem os relacionamentos em uma drvore de “features”
basta apenas que wm de seus ramos sejam totalmente desenvolvildos.

Heuristica 6 Se uma “feature” a aparece no mesmo nivel e abaizo (ou no mesmo nivel
e acima) de uma “feature” 8, entdo o e 3 sdo independentes.

Heuristica 7 Se uma “feature” o aparece apenas ebaizo de uma “feature” B, entdo o
é.aninhada em relagdo a B.

Heuristica 8 Se uma “feature” a aparece apenas no mesmo nivel de uma “feature” B,
entdo a e B sdo interferentes.
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6.3 Determinacgio da Sequéncia de Usinagem

A fim de determinarmos a sequéncia de usinagem, deve-se observar as seguintes heuristicas:

Heuristica 9 Se uma “feature” o for aninhade em relacéo o uma “feature” entdo o
)
deve ser usinada antes de 8.

Heuristica 10 “Features” independentes podem ser usinadas em qualquer ordem relativa.

A heuristica 9 deve ser utilizada jé que geralmente, quando se extraem duas “fe-
atures”, uma aninhada em relagao 3 outra, pode ocorrer que a aninhada tenha que ser
usinada antes para que haja possibilidade da ferramenta entrar para usinar a “feature”
que a aninha. Este caso pode ser observado pela figura 6.2.

Assim, nota-se que a sequéncia de “features” obtidas do escalonador é invertida nos
pontos onde ocorrem “features” aninhadas, com relagio a usinagem. Deste modo, cria-se
uma nova sequéncia, denominada Sequéncia de Usinagem, que é simplesmente a sequencia
obtida pela inversdo da sequéncia do escalonamento. A sequéncia de usinagem ja poderia
ser utilizada para gerarmos o processo, ja que respeita as heuristicas 9 e 10. Porém,
observando a seguinte heuristica:

Heuristica 11 Para que o processo de usinagem se torne eficiente, é melhor que se reduza
o nimero de “set-ups” (troca) de ferramentas. Assim, se duas “features” apresentam o
mesmo tipo de ferramenta, elas devem ser usinadas em sequéncia.

Deve-se entdo agrupar as “features” pelas suas ferramentas!, de forma a reduzir o
ndmero de irocas de ferramentas. Como a heuristica 10 é sempre respeitada, deve-se
tomar cuidado para que a heuristica 9 sempre prevalega. No caso de alteragao, deve-se
“carregar” a “feature” aninhada junto com a “feature” que foi mudada de posigao, de tal
forma que se continue usinando primeiro a “feature” aninhada.

6.4 Processo de Usinagem e Folha de Processo

Neste trabalho optou-se por restringir os sélidos a apenas um plano de usinagem esta
restrigdo se deve ao fato de nao serem disponiveis os médulos de geragao de caminho de
corte € de fixadores. Outra restrigio é que 86 se trabalha com “features” de superficie
de usinagem retangulares, j& que o modelador de sélidos didatico ndo trabalha com ares-
tas curvas. Levando em conta estas restrigdes, introduzimos as seguintes heurfsticas de
manufatura:

1Esta heuristica, que estd ajudando a determinar a sequéncia de usinagem é vélida para as ferramentas
de desbaste. No caso de ferramentas de acabamento, utiliza-se a mesma sequéncia aqui obtida, j& que o
tempo de acabamento é bem maior. As ferramentas para desbaste sio calculadas assim que se exirai as
dimensdes da “feature”, ¢ o método de clculo seréa apresentado na préxima segao.



CAP{TULO 6. SELECAO DO PROCESSO DE USINAGEM 63

Figura 6.2: “Features” aninhadas: como usind-las.

Heuristica 12 Uma “feature” deve sempre ser usinada, no desbaste, com a maior ferra-
menta possivel.

Heuristica 13 A usinagem de uma “feature” de formato retangular se dd no desbaste:
com uma broca do maior didmetro possivel de se utilizar e, se necessdrio®, com a utilizagdo
de uma frese de mesmo diametro da broca; no acabamento: por uma fresa que dé um raio
de arredondamento tdo preciso quanto se deseje?.

Heuristica 14 A profundidade de corte radial de uma fresa deve ser, no mdzimo, igual
a metade do didmetro da fresa.

Heuristica 15 A profundidade de corte azial de uma fresa pode ser, no mdzimo, igual a
duas vezes o diametro da fresa.

Assim, o programa deve trabalhar percorrendo a sequéncia de usinagem, inserindo
O P P q geim,
na folha de processo: o niimero da operagio; o tipo da “feature” que estd usinando; o

?Neste caso, esta ferramenta serd sempre uma broca.

3Comercialmente, ¢ dificil se encontrar brocas de didmetro maior do que 30 mm.

#Neste trabalho ndo apresentamos opgio para raio de arredondamento. Aqui o raio serd sempre de
2.5mm - um raio bastante preciso — ou seja, uma fresa de diametro 5mm.
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arquivo onde se encontra aquela “feature” especifica; a ferramenta com a qual se estd
executando a operagao (que pode ser broca, fresa de desbaste e fresa de acabamento); a
méquina onde se realiza a operagao; se haveré uso de liquido de corte ou nao; a velocidade
de corte calculada’; a rotagdo da maquina (tabelado, em RPM); a velocidade de avango;
a profundidade de corte radial; a profundidade de corte axial.

Todos os parametros tabelados foram escolhidos para o material do sélido como
sendo o aco e o material das ferramentas como sendo ago rapido. Como a evolugdo
do projeto, pode-se acrescentar uma base de dados eficiente associada a um sistema de
tecnologia de grupo, para que se possa ter uma escolha mais eficiente dos parametros.

6.5 Implementagao

6.5.1 Sequéncia de Usinagem

A sequéncia de usinagem é uma lista ligada que tem a seguinte estrutura:

typedef struct sequencia_de_processo SEQ ;

struct sequencia_de_processo
{
N0 *NoDaArvoxe ;
SEf *prox ,
*ant ;

O campo NoDaArvore é um ponteiro que aponta para o né da &rvore que cor-
responde 3 “feature” desejada. Deste modo evita-se guardar dados repetidamente. A
estrutura é montada de forma simples. Percorre-se a sequéncia estabelecida pelo escalo-
namento até se encontrar a dltima “feature” (que tem associada a si o sélido que € um
cubo), e vai-se associando os enderegos dos ponteiros correspondentes a nés da lista que
vio sendo criados conforme se “sobe”. Assim, ao fim do processo, existe uma lista que
associa os enderecos dos ponteiros de forma inversa ao que estava montada a estrutura.
Este procedimento permite que se tenha uma sequéncia de usinagem que ja € possivel de
ser implementada.

Deve-se agora agrupar as “features” que tem ferramentas iguais para reduzir o
nimero de “set-ups”. Este agrupamento ¢ feito da seguinte maneira: escolhe-se um né da
sequéncia e a percorre, procurando “features” com mesma ferramenta. Se encontrar uma
“feature” com a mesma ferramenta, associa o enderego do né desta “feature” ao nd onde
estava a o endereco do né da “feature” que se tomou por referéncia e deslocam-se todos os
nés ao longo da estrutura. A seguir, procura-se por “features” aninhadas a esta “feature”

5A velocidade de corte para uma pega de ago e ferramenta de ago rapido ¢é tabelada e vale de 30 a 45
m/min para desbaste € a metade deste valor adotado para desbaste no acabamento
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e realiza-se o mesmo processo, trazendo-as para “cima” da estrutura e procurando novas
“features” aninhadas. O algoritmo é apresentado abaixo:

Algoritmo(Sequencia de Usinagem)
{
(cria sequencia inicial invertida)
{saida 4o loop = O)
(aurilio recebe o inicio da seguencia)
(auxiliol recebe seguinte ao auxilio)
while (saida do loop == 0)
{
while ((auxiliol nao e BULL) e
(ferramenta de auxilio <> auxiliel))
{
(auxiliol recebe proximo de auriliol)
}
if (auxiliol e NULL)
{
(auxilio recebe proximo de auxilio)
(auxiliol recebe proximo do auxilioe)
if (auxiliel for igual a WULL)
{
(saida do loop Tecebe 1)
}
}
else

{

if (precisa trocar auxilio e auxilioel)

{

{movimenta auxiliol acima de auxilio)
(move aninhadas se¢ necessario}
(va para o inicio da sequencia)

}

else
(auxiliol recebe proximo de auxiliel)

6.5.2 Processo de Usinagem e Folha de Processo

O processo de usinagem e a folha de processo sao gerados simultaneamente. Os célculos
sio realizados como descritos na segdo 6.4. O processo de usinagem é mostrado a cada
passagem de ferramenta. Quando do célculo das passagens das fresas para desbaste, pri-
meiro fazemos todo o desbaste radial a uma determinada profundidade de corte, descendo
em seguida e assim sucessivamente.
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Resultados

7.1 Implementacgao e Integracao

Este sisterna foi implementado em linguagem C. Tomou-se o cuidado de ndo se utilizar
funcdes que nao pertencessem ao C “standard”. Os “include files” que traziam prototipos
de fungdes para DOS foram excluidos de forma que o sistema tanto rodasse em estagdes de
trabalho como em PC’s. Atualmente existem versdes rodando tanto para estagdes padrao
RISC 6000 IBM como para micros padrio IBM-PC. Sendo o sistema base para um sistema
de grande porte (até o momento, este sistema apresenta 15 médulos e aproximadamente
6000 linhas de c3digo), é conveniente que utilize como plataforma as estagdes de trabalho,
que apresentam desempenho muito superior.

A modularizagio prévia do sistema, com o desenvolvimento dos PFS’s, garantiu um
perfeito conhecimento de todas as interfaces existentes no sistema, evitando erros nesta
fase, economizando no tempo de implementagio. Um aspecto que pode ser melhorado
quanto & implementagdo é acabar com a gravagao e leitura de arquivos, que sdo frequentes
no médulo de escalonamento, passando todos os dados para meméria dindmica.

7.2 Exemplo de Aplicagao

Este exemplo é baseado no sélido da figura 7.1. A modelagem deste sélido, bem como a
das “features” que compdem o banco de dados de “features” é apresentada no apéndice

C.

O primeiro passo do sistema é construir a drvore de “features”, realizando o escalo-
namento de “features”, encontrando-se um primitivo, que neste caso serd um cubo, e que
¢ apresentado na figura 7.2.

O arquivo de “features” disponiveis para reconhecimento é apresentado na figura
7.3. Este arquivo contém as “features” na seguinte ordem: 1) quina; 2) degrau interno;
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Figura 7.1: Sélido exemplo

Figura 7.2: Cubo primitivo
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Figura 7.3: Arquivo de “features”

3) furo nao passante; 4) furo passante. Assim, a primeira “feature” que o sistema tenta
reconhecer é uma quina. Este reconhecimento é positivo, a “feature” € reconhecida,
extraida e suas faces sao marcadas. O reconhecimento e extragao desta quina neste nivel
da &rvore sio representados pela figura 7.4. O sélido superior indica o n6 “pai” (de onde
realizamos o reconhecimento), a quina representa a “feature” que se tenta reconhecer, e
o sélido inferior representa o novo sélido criado apés a extragdo da quina, e que gera um
novo né da arvore.

A seguir, o sistema procura por outra “feature” do tipo quina no sélido. Como se
) p

pode notar, no sélido existe apenas uma quina que ja foi reconhecida e marcada. Assim,

a figura 7.5 representa o insucesso de se encontrar uma nova “feature” do tipo quina.

A préxima “feature” que o sistema tenta reconhecer neste nivel é o degrau interno.
Mas o degrau ¢ aninhado em relagio & quina e portanto, nédo serd encontrado ainda neste
nivel. Esta tentativa de reconhecimento é representado pela figura 7.6. Neste nivel
ainda repetimos o processo para para o furo passante e o furo né passante. Pelas figuras
7.7 e 7.8 pode-se ver a construgio final deste nivel da 4rvore. Este nivel da drvore €
representado pela figura 7.8.

A “feature” de maior volume neste nivel é a quina, portanto, o né da 4rvore que seré
escolhido para continuar o processo é o gerado na figura 7.4. O préximo nivel da drvore
¢ entdo representado pela figura 7.9. Seguindo o mesmo processo, os nés da arvore serao
criados segundo as figuras 7.10, 7.11 e 7.12. A érvore de “features” € representada pela
figura 7.13.

Construida a arvore, o préximo passo é determinar a sequéncia para gerar 0 processo
de usinagem. A figura 7.14 representa os vérios passos para se determinar a sequéncia de
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Figura 7.4: Reconhecimento e Extragao da Quina no Primeiro Nivel
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Figura 7.5: Tentativa de Reconhecimento da Quina na Segunda Tentativa
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Figura 7.6: Tentativa de Reconhecimento do Degrau Interno no Primeiro Nivel
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Figura 7.7: Reconhecimento do Furo Passante no Primeiro Nivel
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Figura 7.8: Primeiro Nivel da Arvore
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Figura 7.9: Segundo Nivel da Arvore

usinagem. A figura 7.14 (a) mostra a sequéncia obtida pelo escalonamento. A figura 7.14
(b) mostra a inversdo para resolver o problema das “features” aninhadas. A figura 7.14
(c) mostra o rearranjo da sequéncia para que se diminua o nimero de troca de ferramentas
na usinagem. A folha de processo gerada pelo sistema € apresentada na figura 7.15.
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Figura 7.10: Terceiro Nivel da Arvore
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Figura 7.11: Quarto Nivel da Arvore
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Figura 7.12: Quinto Nivel da Arvore
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Figura 7.13: Arvore de “Features”
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Figura 7.14: Rearranjo da Sequéncia
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Folha de Processo de Solido do Arquivoe: exemplo.nos
Material Utilizado: ACD

80

| OP. | TIPO FEATURE | ARQ.FEATURE | FERRAMERTA | MAQUIRA ] LGC | V.CORTE | RPM | AVANCO | CORTE RADIAL | CORTE AXIAL |
! | | | | l(s/n)| (mfmin) | j Gom/vol) | Com) I (o) |
| 1 | furo-np.nos | feat_5.sai | BOODOOD030 | M000OO1 1 8 9 45 | 999 | 000001 | | |
{ 2 | degr-in.nos | feat_3.sai | B0OO00000S0 | 000001 § S | 45 | 999 | 000001 | | 1
| 3 | furo-np.nos | feat 4.sai | BOOOD00019 | M000001 | S | 45 | 999 | 000001 | 1 |
| 4 | furo-pa.nos | feat_2.sai | B0O000000O09 | MO000OL | 5 1 45 | 999 | 000001 | | |
| 5 | quina.nos | feat_1i.sai | BO0O000000S | 000001 | & | 45 | 999 | 000001 | ! [
| 6 | furo-np.nos | feat_5.sai | FD00000030 | ¥000001 | S | 45 | 999 | 000001 | 4,500 |  40.000 |
| 7 | degr-in.nos | feat. 3.sai | FDOOO00030 1 Moooooi | 5 1 45 | 999 | 000001 | 4.500 | 40.000 |
| 8 | furo-np.nos | feat.5.sai | F400000005 | M0000O1 1 s | 22 | 999 | 000001 | 1.000 | 10.000 |
{9 | furo-np.nos | feat_5.sai | FA00000005 | M000001 | s | 22 | 999 | 000001 | 1.000 | 10.000 |
| 10 | furo-np.nos | feat_G.sai | FAQ0000005 | ¥000001 1 s | 22 | 999 | 000001 | 1.000 { 10.000 I
{ 11 | furo-np.nos | feat_5.sai | FA0000000S | MO00001 1 s | 22 | 999 | 000001 | 1.000 ! 10.000 I
| 12 | degr-in.nos | feat_3.sai | FAODOOOOOS | M000OOL I s 1 22 | 999 | 000001 | 1.000 I 10.000 |
} 13 | degr-im.nos | feat_3.sai | FA00000005 | HO00001 1 8 | 22 | 999 | 000001 | 1.000 1 10.000 I
| 14 | degr-in.nos | feat_3.sai | FA00000005 | K000001 - 22 | 999 | 000001 | 1.000 I 10.000 |
| 15 | degr-in.nos | feat_3.sai | FA00000005 | M000001 | s | 22 | 999 | 000001 | 1.000 1 10.000 |
| 16 | furo-np.nos | feat_4.sai | FAOOD00005 | MOOO0O01 | 8 | 22 | 999 | 000001 | 1.000 1 10.000 |
| 17 | furo-np.nos | feat.4.sai | FA00000005 | M000001 1 s | 22 | 999 | 000001 | 1.000 | 10.000 i
| 18 | furo-pa.nos | feat.2.sai | FAOO000005 ] MO00001 | S i 22 | 989 | 000001 | 1.000 1 10.000 |
|l 19 | quina.nos | feat_1.sai | FA00000005 | ®000o01 | 5 | 22 | 999 | 000001 | 1.000 I 10.000 1

Figura 7.15: Folha de Processo do Sélido Exemplo
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Conclusao

O médulo de Reconhecimento Automdtico de “Features” foi completamente implementado
e pode-se dizer que atinge plenamente a condigao de ser totalmente genérico. O sistema
est4 preparado para as modificagoes que devem ocorrer no modelador de sélidos didético
(como o acréscimo de arestas curvas). As técnicas de inteligéncia artificial acrescidas
aumentam em muito o desempenho do sistema, como foi demonstrado no grafico da
figura 4.3. O extrator aqui implementado nao fazia parte do escopo original do projeto.
A solugio adotada funciona muito bem para nosso objetivo, mas para algumas “features”
ainda deve ser estudado (ele funciona apenas para “features” que para serem extraidas
nio necessitam que arestas ou faces sejam acrescidas ao sélido, como a quina, o degrau
interno, o furo passante e o furo ndo passante. Para “features” como um degrau ao longo
de uma aresta, onde deve ser acrescida uma aresta — ou seja, prolongar as faces — o
algoritmo ndo funciona). Uma solugac mais genérica pode ser obtida pela implementagao
de um algoritmo que seja baseado em operagdes booleanas do modelador de sélidos, porém
com um gasto de tempo computacional muito maior. Talvez, seja interessante tornar o
extrator implementado mais genérico.

O médulo de Escalonamento Automdiico de “Features” foi também plenamente im-
plementado. A aplicagéo da heuristica de maior volume (heurfstica 4, capitulo 6) foi de
fundamental importancia para que o sistema reduzisse o espago de busca, tornando o pro-
cessamento do algoritmo suporével, isto ¢, polinomial. O algoritmo deixa de criar nés por
um método combinatério e passa a crié-los de acordo com um método de selegao através
de heuristicas, o que o torna mais efetivo.

O médulo de Refinamenio de “Features”, composto pelos médulos de Reconheci-
mento Automdtico de “Features” e Escalonamento Automdtico de “Features”, constitul
a base do sistema de planejamento de processos automatizado. A escolha adequada das
“features” que compdem o Arquivo de “Features”, e que podem ser extraidas do sélido
modelado, depende exclusivamente da aplicagéo e influencia diretamente sobre o desem-
penho do sistema. Um grande nmimero de “features” no Arguivo de “Features” aumenta
o campo de uso do sistema, entretanto aumenta o tempo de computagao e requer maior
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volume de memoria.

O médulo de Selegdo do Processo de Usinagem atingiu seu objetivo: determinar a
sequencia de usinagem € O Processo de manufatura do sélido. Pode-se dizer que a parte
mais importante deste médulo do sistema foi a determinacio das heuristicas. Deve-se
lembrar que algumas restrigdes foram feitas quanto a aplicagdo do sistema (usinagem
em apenas um plano de “features” de formato retangular). Estas restrigdes foram feitas
na medida em que se pretendia mostrar o caminho para desenvolver o sistema. Muitas
outras heuristicas poderiam ser adicionadas, tornando maior o dominio de aplicagao do
sistema. Um cuidado a ser tomado é para que nao se incluam heuristicas em excesso,
tornando o sistema redundante em alguns aspectos. Tanto o médulo de Escalonamento
Automdtico como o de Selegdo do Processo de Usinagem devem, em um proximo passo,
ser implementados novamente, agora se utilizando PROLOG, a fim de tornar o sistema
ainda mais genérico pela introdugdo de novas heuristicas.

Pode-se dizer, quanto & fase de integragao, que o fato do sistema ter sido conveni-
entemente especificado em termos de diagramas PFS, foi de vital importancia para que
o sistema se ajustasse perfeitamente. Qutro fato importante a destacar é a portabilidade
do sistema, que atualmente estd compilado e operando tanto para micros padrao IBM-PC
como para estagdes de trabatho IBM RS-6000.




Apéndice A

Outros Conceitos Envolvidos

A.1 Grafos

Esta segio apresenta a teona pecessaria para tratar-se da implementagio de uma érvore,
fundamental para o desenvolvimento deste projeto.

Assim, primeiro apresentaremos o conceito de grafos, base para a definigao de arvores
e, posteriormente, apresentaremos o conceito de arvores propriamente dito.

A.1.1 Conceituacaa de Grafos

Um grafo consiste de dois subconjuntos: um subconjunto V, ndo vazio e finito, chamado
conjunto dos nés e um subconjunto E, também ndo vazio e finito, chamado conjunto dos
arestas. Pode-se notar entdo que a todo vértice do grafo é possivel associar dois nos.
Dois nés conectados por uma aresta sao chamados de nds adjacentes. Quando a aresta
possui uma diregdo definida é chamada por aresta orientada, caso contrério é chamada
por aresta néo orientada. Um grafo que possui todas as suas arestas orientadas é chamado
grafo orientado (ou digrafo!). O grafo pode ainda ser dito mixado, se for composto de
arestas orientadas e arestas ndo orientadas.

Sejam os nds u e v. Se uma aresta & orientada de u para v entdo u é dito nd inicial
e v ¢ dito né terminal. Uma aresta que liga estes dois n6s ¢ dita incidente a estes dois
nés. Uma aresta que liga um né a ele mesmo € chamada de “loop”. Quando duas arestas
unem o mesmo par de nds elas sdo ditas paralelas e o grafo que as contém é denominado
um multigrafo. Um né que néo possui conexio a nenhum outro é denominado né isolado,
e um grafo que contém apenas este tipo de né é chamado de grafo nulo.

Em um grafo direcionado, para qualquer né v, o niimero de arestas que tem v por
né inicial é chamado de “grau de saida” do né v. O ptimero de arestas que tem v por né

1Do original em Inglés directed graph - digraph.
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terminal é chamado de “grau de entrada” do né v. A soma dos valores “grau de saida” e
“grau de entrada” é chamado de “grau total”.

A definicio de grafos nao faz referéncia ao comprimento ou a forma e posicionamento
das arestas que unem dois nos quaisquer, bem como nao prescreve qualquer ordem para
o posicionamento dos nés. Pode acontecer que dois diagramas que paregam totalmente
diferentes representem o mesmo grafo, o que acontece com as figuras A.1 (a) e (2').

Seja um digrafo G = (V, E). Considere a sequéncia de arestas E de G de tal forma
que o né terminal de qualquer aresta da sequéncia € o né inicial da préxima aresta. Um
exemplo de tal sequéncia é:

((Un,’viz), (‘Uiz,’via), eey (Uik—Za 'Uik-i), ('Uik—l 3 'Us'k))

Note que todos os nés da sequéncia de arestas E precisam ser distintos mas que nem
todo conjunto de nds escritos em qualquer ordem fornecem a sequéncia do modo desejado.
Assim, cada né da sequéncia deve ser adjacente aos nGs que aparecein imediatamente antes
e apbs ao nd, com €xcegio ao primeiro e 1ltimo nés. Qualquer sequéncia de arestas de
um digrafo tal que o né terminal de qualquer uma das arestas na sequéncia ¢ o né inicial
da préxima aresta da sequéncia, define um caminho? do grafo. Um caminho atravessa os
nés da sequéncia; o caminho se origina no n6 inicial da primeira aresta e termina no né
terminal da dltima aresta da sequéncia. O nimero de arestas que aparecem na sequéncia
de um caminho é chamado comprimento® do caminho. Um caminho que se inicia ¢ termina
no mesmo né é chamado de circuito®. Um digrafo que nio possui circuitos é chamado de
digrafo aciclico. Naturalmente, estes grafos ndo podem ter “loops”.

A.1.2 Representacio de Grafos

Um grafo pode ser coompletamente determinado por suas adjacéncias e incidéncias. Estas
informagoes podem ser convenientemente colocadas na forma de uma matriz, facilmente
implementada em um programa de computador. Deste modo, para um determinado grafo,
existem varias matrizes, incluindo a matriz de adjacéncia e a matriz de incidéncia, que
serdo aqui apresentadas.

Matriz de Adjacéncia A

A matriz A = [a;;] de um grafo G, com p nds é a matriz (p X p) na qual a;; = 1 se
v; ¢ adjacente a v; € aij = 0 se v; nio for adjacente a v;. Deste modo, existe uma
correspondéncia direta entre um grafo com p nds e uma matriz bindria simétrica (pxp) com
diagonal zero. A figura A.2 mosira um grafo G e a correspondente matriz de adjacéncia A.

2¢path”.
3ulength”.
4ecyel.
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Figura A.l: Exemplos de Diagramas Diferentes que Representam o mesmo Grafo

Uma observagio imediata é que a soma dos valores de uma linha  da matriz é igual ao grau
do né v,. Devido & correspondéncia entre grafos e suas matrizes de adjacéncia, anélises
de propriedades de um grafo podem ser realizadas diretamente sobre estas matrizes.

Matriz de Incidéncia B

Uma segunda matriz, associada a um grafo G, no qual arestas e nds s nomeados, é a
matriz de adjacéncia B = [b;;]. Esta matriz (p x g) tem b;; = 1 se v; e z; so incidentes.
De outro modo, b;; = 0. Quaisquer (p — 1) linhas de B determinam G desde que cada
linha é a soma de todas as outras mod 2.

A.1.3 Arvores

Arvores sdo tteis para descrever qualquer estrutura que envolve hierarquia. Podemos citar
alguns exemplos conhecidos como: arvores de familia; a classificagdo decimal de livros em
uma livraria; a hierarquia de posigdes em uma organizagio; uma expressao algébrica que
envolve operagoes para as quais sao determinadas regras de precedéncia.

No que diz respeito a grafos, uma drvore direcionada é um digrafo aciclico que possui
um né chamado raiz, com “grau de entrada” igual a zero, enquanto todos os outros nos
possuem “grau de entrada” igual a um. Uma arvore deve ter pelo menos um né. Cada
né da drvore é chamado de né terminal (ou folha), se tiver “grau de saida” igual a zero.
O nivel de um nd da &rvore é o comprimento do seu caminho desde a raiz. Assim, o
nivel da raiz é ignal a zero, enquanto o nivel de qualquer né é igual & sua distancia até
a raiz. Observe que em qualquer caminho de uma drvore nunca se repele o mesmo né e
que o comprimento de um caminho de um né qualquer da arvore até um outro né (se este
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/\ 01 1 01
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Figura A.2: Um Grafo e sua Matriz de Adjacéncia

caminho existir) é a distincia entre os nés, j& que uma &rvore ¢ aciclica. A figura A.3
mostra alguns exemplos de drvores.

Com base nos conceitos apresentados acima [Tremblay 84] definiremos posigoes
relativas entre dois nos:

Definigao 22 Seja um caminho onde ezistem dois nés z e y. Se  for o né inicial do
caminho € y o nd terminal do caminho e o valor do comprimento de z em relagdo & raiz
for menor que o valor do comprimento de y em relagdo & raiz, entdo z estard acima de y.

Definicio 23 Sejam dois nés z e y. Se o comprimento dos nés em relagdo d raiz for
igual, entdo os nds z e y estdo ao mesmo nivel.

Ainda com base nos conceitos apresentados por [Tremblay 84] e apoiado nas defi-
nigdes apresentadas acima, definiremos uma nomenclatura prépria as arvores, que serd
utilizada de agora em diante:

Definigdo 24 Um né z, encontrado diretamente acima de um né y, serd dito pai do né
Y.

Definicao 25 Um né z, encontrado diretamente abaizo de um nd y, serd dito filho do
né y.

Definicio 26 Um nd ¢, encontrado no mesmo nivel de um né y, serd dito irmao do nd
y, desde que z e y possuam o mesmo pai.
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Figura A.3: Arvores

Um outro conceito importante é que as arvores sao recursivas. Assim, uma arvore
contém um ou mais nés de tal modo que um né é chamado raiz enquanto todos os outros
n6s sio divididos em um ndmero finito de drvores ditas sub-arvores.

Aplicaremos agora restrigdes acerca dos “nés de saida” de cada né da &rvore. Se
em uma arvore o “grau de saida” for menor ou igual a um valor M, entao a &rvore sera
dita “4rvore M-ria”. No caso de ndo haver restrigdo, a arvore € chamada de Arvore
Genérica. Para M = 2, teremos as chamadas Arvores Bindrias. A figura A.4 apresenta
exemplos de drvores binarias. Arvores binarias séo muito tteis em um grande nimero de

aplicagbes, inclusive no sistema proposto neste trabalho, como poderé ser notado adiante.

A.2 Operadores de Euler

O principal objetivo de se utilizar Operadores de Euler é facilitar a manipulagdo das com-
plicadas estruturas B-REP, construindo os modelos passo a passo pelo uso de um conjunto
minimo de operadores que manipule a estrutura de dados B-REP e esconda detalhes de
implementagao. Os Operadores de Euler tornam possivel a construgao incremental de um
objeto, de maneira semelhante a desenhar o objeto linha a linha. Eles também facilitam
alteragdes locais de forma, caracteristica que é muito importante para projetistas de mo-
deladores de sélidos. A estrutura B-REP pode ainda ser utilizada de forma a determinar
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Figura A.4: Arvores Binérias

se o sélido criado € um sélido vélido.

Um sélido de s pecas desconexas e constituido por f faces, e arestas, v vértices e h
furos deve obedecer & férmula de Euler-Poincaré:

v—e+ f=2x(s—h)}

Esta férmula pode ser modificada de forma que se torne consistente com as con-
vencoes da estrutura B-REP, pela adigio de um novo parametro: [, que representa o
nimero de lagos. Todos os lagos, com excecio de um em cada face, podem ser removidos
pela introdugdo de arestas-ponte conectando os lagos entre si. Nenhum novo vértice é
introduzido por esta operagio, mas o mimero de arestas depois de removidos os ! — f
lagos deverd ser ¢/ = e + 1 — f. Substituindo €’ por e na equagao, temos:

v—e+2xf=2x(s—h)+1

Diferenciando-se os lagos internos {chamados de anéis, que definem o contorno inter-
no das faces) dos lagos externos (que definem os contornos externos das faces) e assumindo-
se que um sélido possua r anéis, obtemos:

v—et+ f=2%x(s—h)+r

A férmula de Euler-Poincaré restringe as combinacoes validas entre primitivos a um
subconjunto de todas as combinagoes possiveis.
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Vérios autores demonstram que cinco operadores sio suficientes para construir todos
os objetos. Estes cinco operadores podem ser escolhidos de varias maneiras. Um conjunto
possivel de cinco operadores de Euler ¢ apresentado abaixo:

1. mvsf(Make Vertex Solid Face): Cria um sélido inicial, consistindo apenas de
uma face inicial € um vértice;

2. mev(Make Edge Vertex): Adiciona uma nova aresta, conectando um vértice a
um novo vértice;

3. mef(Make Edge Face): Divide uma face por meio de uma nova aresta conectando
dois vértices;

4. kemr(Kill Edge Make Ring): Dinide o contorno de uma face em dois compo-
nentes pela remogao da aresta-ponte;

5. kfmrh(Kill Face Make Ring Hole): Une duas faces de maneira que o contorno
da primeira face se torne componente do contorno da segunda face.

Durante a construcio de modelos com Operadores de Euler, a topologia é mantida
vélida segundo a equagio de Euler-Poincaré. Ao final de uma sequéncia de Operadores
de Euler assume-se que a geometria do sélido estd correta, mas durante os estigios inter-
medidrios ndo ha como manter a geometria e a topologia consistentes devido a presenga
de faces ndo planares, que, frequentemente, ndo séo possivels de serem representadas por
nenhuma forma matemética. Portanto, os Operadores de Euler sdo seguros por si, mas
devem ser colecionados em sequéncias que fornegam um significado[Tsuzuki 91b).

Um exemplo de como funcionam estes operadores pode ser visto na tabela A.1, que
mostra os operadores de Euler que representam um cubo de lado 10.
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mvst]1121010.00.00.0

svme | 1222111110.00.00.0

svme |121131111106.010.00.0
svme | 1322411110.010.00.0
mef (114231112

syme | 1122522110.00.010.0
svme | 12336221110.00.010.0
mef 156122223

svme | 13447221110.010.010.0
mef | 167232324

svme | 1411822110.010.010.0
mef | 178342425

mef (185462536

obsl: Este é um exemplo real, retirado do modelador
de sdlidos didético € os valores aprescntados o aqui
apenas ilustrativos, representando o nimero de faces,
arcstas e vértices, comprimento de arcstas, cimera do
objeto, ....

obs2: O operador SVME é andlogo ac operador MEV,
sendo de mais alto nivel, apresentando informagSes de
c&mera, grupo, etc.. ..

Tabela A.1: Operadores de Euler para um Cubo de lado 10

90




Apéndice B

Simulacio de um Reconhecimento
de “Feature”

Este apéndice tem por objetivo mostrar como s¢ realiza o processo de reconhecimento
automatico de “features”. A figura B.1 mostra um sélido e uma “feature” e a seguir &
apresentado o processo de reconhecimento da “feature” no solido.

91
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solido

“feature”

i1

\r-— - — —— — — — ——

/ 13
112 14

Figura B.1: “Feature” a ser reconhecida no sélido

“Feature” modelada® para o Reconhecedor:

7 \* Numero de faces da "feature" »\

1 \* ¥umero da face da "featore" »\
41 \* Numero de lacos da Funcao de Modelagem e 1[L1*\
00 02 \* Parte topologica da Funcao de Modelagem  *\
1 \* Relacao de adjacencia desconexa 1[L] *\
0 0 O 270\ Parte geometrica da Funcao de Modelagem *\,

1Neste exemplo utilizamos como informagé geométrica somente os angulos entre faces
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0 0 270

93
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Sélido modelado para o Reconhecedor:

1
14 12 13

A b A B e

70 270 270 270

270 270 270 270

4
4
3
4
270 270 90 270

5

41

136 14 4

5

270 90 270 90

6

41

13714 6

6

270 90 270 90

7

31

13814 6

7

270 90 270 90

8

41

13914 7

8

270 270 270 90

9

41

13 1014 8

9

270 270 270 270

10

41

13 11 14 9

10

270 270 270 270

1
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41

13 12 14 10

11

270 270 270 270

12

41

13 1 14 11

12

270 270 270 270

13

12 1

1211 10987654321

13

270 270 270 270 270 270 270 270 270 270 270 270

14

12 1

1234567891011 12

14

270 270 270 270 270 270 270 270 270 270 270 270
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Relatério de saida do Reconhecedor:

PROCESS0 DE COMPARACAD PASSO A PASS0

PDSSIVEIS £.1.1b :
12345678910 1112

POSSIVEL £.1.1b
1

POSSIVEL f.1.1la 3
1

errrrrerspperereweeepere P PUES ST LI L LA LLL L b bbbt bbb
Estado atual da pilha

1 0002|0000

1 214121310000

0.000 0.000 0.000 270.000
270.000 270.00¢ 270.000 270.000

numero de elementos na pilha = 1

PASSO1 : primeiro par -> 11
rrrreprerewpmepseer PEE PETLETE LIS LA L d bt bbb b dted
Estade atual da pilha

1 000210000
1 212412130000

0.000 0.900 0.000 270.000
270.000 270.000 270.000 270.000

numerc de elementos na pilha =1
PASS02 : INSUCESST

Frrrrrerevepwsmpperprer TITT TE ST LA TS S 2 L2 L Ll Ll b bl b bbbl
Estado atunal da pilha

1 0002]00060

1 14121320000

0.000 0.000 0.000 270.000
270.000 270.000 270,000 270.000

1 1
1

|1
1 11

numero de elementos na pilha = 1
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PAS503 : mova concatenacao

PP T S T T ELA T L S LA S b i bbb bbbt
Estado atual da pilha

1 0002|0002
1 1412132 | 0002

0.000 0.000 0,000 270.000
270.000 270.000 270.000  270.000

2 0103[(C¢100
2 14113310100
0.000 270.000 ©.000 90.000

270.000 270.000 270.000 270.000

numerc de elementos na pilha = 2

PASS02 : novo par -> 2 2
itt**1*1*t#***tttit#l*tt***t"li*t*lt**lit‘ttt‘*t***i*it#t**‘
Estado atual da pilha

1 o0o02|0002

1 141213210002
0.000 0.000 0.000 270.000
270.000 270.000 270.000 270.000

1 111

1 111

2 010310100

2 14113310100

0.000 270.000 0.000 90.000

270.000 270.000 270.000 270.000

numero de elementos ma pilha = 2

PASS02 : INSUCESSO
FEESAEEEREAREEEE AR AR R AR R AR RR R AR A
Estado atual da pilha

1 0002|0000
1 141213210000
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0.000 0.000 0.000 270.000
270.000 270.000 270.000 270,000

numero de elementos na pilha = 1
PASS03 : INSUCESSD

.**tt"t#ﬁi##*#*i*#i****#‘!**##****#.“tt**##*l‘t*tl***l‘*##**ﬁ‘

Estado atual da pilha

1 00020000

1 1213214 | 06G00

0.000 0.000 0.000 270.000
270.000 270.000 270.000  270.000

numero de elementos na pilha = 1

PASSD3 : nova concatenacao

P e TP PR P IR L L L S s L A h bbbl S At h
Estado atual da pilha

1 0002|0000
i 121321410000

0.600 0.000 0.000 270.000
270.000 270.000 270.000  270.000

numero de elementos na pilha = 1

PASS02 : INSUCESSO

P L S T LRI L L Ll et b it s
Estado atual da pilha

1 0002|0000
1 132141210000

0.000 0.000 0.000 270.000
270.000 270.000 270.000 270.000

numerc de elementos na pilha = 1

PASS03 : nova concatenacao

98
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#*t##tt1‘11##*#t“l-‘ttttt*#####l‘!t*t!’t*tit.#tt#t‘#.ltltt!***
Estado atual da pilha

1t ¢c002]|00012
i 1321412 | 00012

©.000 0.000 0.000 270.000
270.000 270.000 270.000 270.000

2 010310100
12 1311411 | 01
0.000 270.000 0.000 90.000
270.000 270.000 270.000 270.000

numero de elementos na pilha = 2
PASS02 : movo par —> 2 12

tl!tli*#tt******#t**t*#*#‘****#**tlt#**1#'#****#'***##0‘#‘***

Estado atual da pilha

1 0002)] 00012

1 13214121 000 12

0.000 0.000 0.000 270.000
270.000 270.000 270.000 270,000

2 0103j(0100

12 131131411 |/ 0100

0.000 270.000 0.000 90.000
270.000 270.000 270.000 270.000

numero de elementos na pilha = 2
PASSD2 : INSUCESSD

PYTI TIPSR 2422 22 DX 2B 2222 2R 2 Lot il bl dd )

Estade atual da pilha

1 0002|0000
1 132141210000

0.000 0,000 ¢.000 270.000
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270.000 270.000 270.000  270.000

numero de elementos na pilha = 1

PASS03 : INSUCESS0

POSSIVEL £.1.1b :
2

POSSIVEL f.1.la
i

A FRIARERE R RS R AR R R R AR AR AR ER AR ERR AR R AR R AR EER Rk
Estado atuazl da pilha

i 0002|0000

2 11331410000

0.000 0.000 0.000 270.000
270.000 270.000  270.000  270.000

numerc de elementos na pilha = 1
PASSD3 : novo primeirxo par => 1 2

AREERREEERRERER R R SR EE AR RERS LR RER R ER bR RER Rk bk Rk
Estade atual da pilha

0002|0000
11331410000

0.000 0.000 0.000 270.000
270.000 270,000 270.000 270.000

numexrc de elementos na pilha =1
PASS02 : INSUCESSO

SRPEEEFRREKER PR ERERIB RN AEI HAS S REX ERERFRRRREEREKRREEF RS FA SR RE

Estado atual da pilha

1 0002]C000
2 133i41 10000
0.000 G,000 0.000 270.0060

270.000 270.000 270.000 270.000
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numerc de elementos na pilha =1
PASS03 : nova concatenacao

it*t‘**t#t#*#1#‘1#tt*##itt*t#*#**#t*#1##***1##**#*****#**1###

Estado atual da pilha

1 00020001
2 13314110001
0.000 Q.000 0.000 270.000

270.000 270.000 270,000  270.000

2 0103|0200

1 132141210200

0.000 2706.000 0.000 90.000
270.000 270.000 270.000  270.000

numero de elementos na pilha = 2
PASSD2 : novo par -> 2 1

!!**i***#t*!**l*##*******#i#*t‘t**Qt'***‘!##!*'#ltt#******l‘#

Estado atual da pilha

1 00020001
2 13314110001
0.000 0.000 0.000 270.000

270.000 270.000 270.000 270,000

2 010310200

1 132141210200

0.000 270.000 0.000C 90.000
270.000 270.000 270,000 270.000

numero de elementos na pilha = 2
PASS02 : INSUCESSO

*!##*‘#t#ttllitt#ti#‘il.tiIt***!ltttt*it.*#.ttl*tti‘t*tli‘#‘#

Estado atual da pilha
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1 oo0c2]o00CO00

2 13314110000

0.000 0.000 0.000 270.000
270.000 270.000 270.000 270.000

numero de elementos na pilha = 1

PASSD3 : INSUCESSD

*t*‘l#tiﬁ*#**t‘1“*'*‘#1##ltii*tt**‘**#‘**#’t*t*tt#‘#‘*i“iit

Estado atual da pilha

0.000 0.00C Q.000 270,000
270.000 270.000 270.000  270.000

numero de¢ ¢lementos na pilha =1

PASS03 : nova concatenacao

[T e L T T T A L S T L L R LR A L e e bl b Lttt

Estado atual da pilha

002]0000
14113 | 00C O

0.000 0.000 0.000 270.000
2706.000 270.000 270.000 270.000

numero de elementos ma pilha = 1
PASS02 : INSUCESSO
PR e e e T TR PR PR T RS LR L e Sl L bl

Estado atual da pilha

0.000 0.000 0.000 270.000
270.000 270.000 270.000  270.000
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numerc de elementos na pilha =1
PASSHA : nova concatenacac

.*tt*#t**ﬂttt##tt*‘*#ii#t#‘#tit#i*t*‘*ti#tlt#t#tt##‘**tttt*#.

Estado atual da pilha

1 0002|0003
2 1411330003
0.000 0.000 0.000 270.000

270.000 270.000 270.000 270.000

1 112

2 212

2 010310200

3 14213410200

0.000 270.000  0.000 90,000

270.000 270.000 270.000 270.000

numero de elementos na pilha = 2
PASSD2 : novo par -> 2 3
FUPPErrrmmemepeeesperre R TR ST L L LI L LS L Lttt bbb

Estado atual da pilha

1 000210003
2 14113310003
0.000 ©.000 0.000 270.000

270.000 270.000 270.000  27¢.000

1 112
2 2|2
2 01030200
3 14213410200
0.000 270.000 0.000 90.000

270.000 270.000 270.000 270.000

numero de ¢lementos na pilha = 2
PASS02 : INSUCESSO

SRS EREARRSEARREERSERERRETEK BRKKER YIS 2 22 22

Estado atual da pilha

1 00020000

103
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2 1411331 000¢0

0.000 0.000 0.000 270.000
270.000 270.000 270.00G  270.000

numerc de elementos na pilha = 1

PASS03 : IRSUCESSB

POSSIVEL f.1.1b
3

POSSIVEL £.1.1a :
1

ARR R R R AR R R R R R AR R R R R
Estado atual da pilha

1 000210000

3 2134140000

0.000 0.000 0.000 270.000
270.000 270.000 270.000 270.000

numero de elementos na pilha = 1
PASS03 : nove primeiro par -> 1 3

P R T L e T SR I ettt
Estado atual da pilha

i 6000210000

3 21341410000

0.000 0.000 0.000 270.000
270.000 270.000 270.000 270.000

numero de elementos na pilha = 1
PASS02 : INSUCESS)

T T T e R T e eI L L sl
Estade atual da pilha

1 0002§0000

3 13414210000

0.000 0.000 0.000 270.000
270.000 270.000 270.000 270.000
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numero de elementos na pilha = 1
PASS03 : nova concatenacao

[ e LT T T 1L EA TR A SR T2 2 2 Lo R LRt Rl LA E sl bl dd

Estadoe atual da pilha

1 000210002
2 134142 | 0002
0.000 0.000 0.000 270.000

270.600 270.000 270.000 270.000

1 113

3 3]3

2 010310300

2 1331411 03¢0

0.000 270.000 0,000 90.000

270.000 270.000 270.000 270.000

numerc de elemerntos ma pilha = 2
PASS02 : novo par -> 2 2
A ok kR R ok R R R R R R R R R R R E Nk

Estade atual da pilha

0.000 0.000 0.000 270.000
270.000 270.000 270.000 270.000

2 0103|0300

2 13314310300

¢.000 270.000 0.000 90,000
270.000 270.000 270.000 270.000

numero de elementos na pilha = 2

PASS02 : INSUCESSO
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‘ttttt*#t*t#t*t#!G0.**tittt#t‘t##!tttttt#*‘**i*ti*i#**t‘##ii.

Estado atual da pilha

0.000 0.600 0.000 270.000
276.000 270.000  270.000  270.000

1 113
3 3|3
numero de elementos ma pilha = 1

PASS03 : IESUCESSD

‘*'tt*#.**#‘Ittlti#ti*tt*ttt***#t#t***'.*t*liit#*******#.tt**

Estade atual da pilha

0.000 0.000 0.000 270.000
270.000 270.000 270.000 270.000

numero de elementes na pilha =1
PASSD3 : mova concatenacao

P TP PP LR T L L Sl et bbb bbb bbbt b
Estado atual da pilha

1 000210000

3 41421310000
¢.000 0.000 0,000 270.000
270.000 270.000 270,000 270.000

1 113
3 313
numerc de elementos ma pilha =1

PASS02 : IESUCESSO

kEFRR " TIPS R R T S22 R R L 22t Ly )

Estado atual da pilha

1 000210000
3 1421340000
0.000 0.000 0.000 270.000

270.000 270.000 270.000 270.000
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3 313

numerc de elementos ma pilha =1
PASS03 : nova concatenacao

*ttti##tt!‘*#t‘tt'.!tt*##!1#11##*!t**¥t*t****!*****'1‘*ttit*t

Estado atual da pilha

1 0002|0004
3 1421341 0004
0.000 0.000 0.000 270.000

270.000 270.000 270.000  270.000

2 0103|0300
4 $t43135|1 0300
0.000 270.000 0.000 90.000

270.000 270,000 270,000 90.000

numero de elementos na pilha = 2

PASS02 : novo par —> 2 4

ko R F R R fkk P22 223 TI LRI S22l L a2l )

Estade atual da pilha

0.000 0.000 0.000 270.000
270.000 270.600 270.000 270.000

2 010310305

4 14313510305
0.000 270.000 0,000 90.000
270.000 270.000 270.000  90.000

2 214

4 a4

3 204014000

5 41361414000

90.000 0.000 90.000 0.000

80. 000 270.000  90.000 270,000
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o W
oo
o

numero de elementos na pilka = 3
PASS02 : novo par -> 3 &

t‘###ttCittitttttt‘#iil*******t*tt‘tt#i*11‘1****#‘!*‘#*#*****

Estado atual da pilha

3 142134

¢.000 0.000 ©0.000 270.000
270.000 270.000 270.000  270.000

1 000210004
|ooo

1 113
3 313
2 010306305
4 1431350305
0.000 270.000  0.000 90.000

270.000 270.000 270.00C  90.000

2 2| 4

4 4] 4

3 20404060

S 413614} 4060

90.000 0.000 90.000 0.000

90.000 270.000 90.000 270.000

0wt

315
5|6

4 305015000

6 51371415000
90.000 0.000 90.000 0.000
90.000 270.000  90.000 270.000

numero de elementos na pilha = 4
PASS502 : novo par ~> 4 6

SREAAREEEEREEER KA R R R E AR R REE L i 2 * sk EkR *%

Estado atnal da pilha

1 000210004
3 14213410004
0.000 0.000 0.000 270.000

270.000 270.000 270.000 270.000
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-
W W

2 010310305
4 143135{03065
0.000 270.000 0,000 90.000

270.000 270.000 270.000 90.000

2 2] 4

4 4144

3 20404060

5 413614 | 4060

90.000 0.000 90.000 0.000

80.000 270.000  90.00C 270.000

3 3165

5 518

4 3050|5070

6 513714 | 5070

90.000 0.000 80.000 0.000

90.000 270.000 90,000 270,000

4 416
6 616
S 406016000
7 613814 | 6000
90.000 0.000 80.000 0.000

90.000 270.000  90.000 270.000

5 517
T 717

numero d¢ elementos na pilha = 6
PAS302 : novo par -> § 7

SRAAERRRER AR AR AR R AR Rk d SRR R AR KRRk f b Rk
Estado atual da pilha

1 0002|0004
3 14213410004
0.000 0.000 0.000 270.000
270.000 270.000 270.000 270.000
1 113
3 313

2 01031030656
4 34313510305
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0.000 270.000  0.000 90.000
270.000 270.000 270.000 90.000

2 214

4 2] a

3 204014060

5 4136141 4060

90.000 0.000 90.000 0.000

90.000 270.000  90.000 270,000

90.000 0.000 90.000 0.000
90.000 270.060  90.000 270.000

5 4060|6080
7 6138141 608

90.000 0.000 90.000 0.000
90.000 270.000  90.000 27G.9000

6 5070|7000

8 71391417000

90.000 0.000 270.000 ©.000
90.000 270.000  270.000  270.000

numerc de ¢lementos na pilha = 6

PASS02 : novo par -> 6 8
t#**t**il*lt#t*.t.‘.#illitt#tt‘!t‘lt**t‘tt*“‘**tilltlﬂt*tt*“
Estado atual da pilha

1 0002|0004
3 142134 | 0004

0.000 0.000 0.000 270.000
270.000 270.000 270,000 270.000

1 1]3
a 3|3
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2 010310305
4 14313510305
0.000 270.000 ©.000 90.000

270.000 270.000 270.000  90.000

2 214
4 41 4
3 204014060
5 413614 | 4060
90.000 0¢.000 90.000 0.000

90.000 270.000  90.000 270.000

4 3050|5070
6 51371415070

90.000 0.000 90.000 0.000
80.000 270.000 90,000 270.000

4 48
6 616
$ 4060|6080
7 6138141 6080
90,000 0.000 90.000 0.000

90.000 270.000  90.000 270.000

s 517

T 7TH7

6 5070|7090

8 71392147090

90.000 0.000 270.000 0.000

90.0600 270.000 270.000 270.000

7 0006|0008
9 131014810008

0.000 0.000 0.000 270.000
270.000 270.000 270.000 270.000

numero de elemehtos na pilha = 7

PASSO2 : novo par -> 7 9
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.$t$$'##*#*t#itt‘tt!ﬂll!'ttt!t#***ﬁt#i*t*!#*#*tttt*#######!t#*

SOLID0OS EQUIVALERTES

numerc de comparacces = 19



Apéndice C
Modelagem do Exemplo Proposto

Este apéndice mostra como é feita a modelagem do sélido do exemplo apresentado no
capitulo 7 e as modelagens das “features” do Banco de Dados de “features”.

Modelagem do Exemplo Proposto:

3

1

41

22645

1

90 40 270 40 90 40 90 40

2

4 1
32615
2

o

0 40 270 40 90 40 90 40

3

41
42625
3

9

0 40 270 40 90 40 90 40

90 40 90 40 90 40 90 40

6

113
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41
78910
6

270 20 270 20 270 20 270 20

90 20 270 20 90 20 90 20

9

41

10 6 8 11

9

90 20 270 20 90 20 80 20

10

41

76911

10

90 20 270 20 90 20 90 20

11

4 2

10987

11 28

90 20 90 20 90 20 90 20

12

10 2

23 15 14 13 18 19 21 16 22 24

12 26

270 100 270 100 270 10 270 10 270 40 270 40 270 40 270 100 270 100 270 100

13

41

12 14 27 18

13

270 16 90 10 90 10 270 10

14

41

12 15 27 13

14

270 10 270 10 90 10 90 10

15

10 t

23 25 22 12 21 20 18 27 14 12

15

270 70 270 100 270 70 270 100 270 40 270 40 270 40 270 10 270 10 270 100

18

61

27 16 20 19 12 13

18

270 10 270 40 90 40 90 40 270 40 270 10
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19

41

18 20 21 12

19

90 40 90 40 90 40 270 40

20

41

18 15 21 19

20

90 40 270 40 90 40 90 40

21

41

19 20 15 12

21

90 40 90 40 270 40 270 40

22

41

16 256 24 12

22

270 70 270 100 270 70 270 100

23

41

12 24 25 15

23

270 100 270 70 270 100 270 70

24

41

12 22 25 23

24

270 100 270 70 270 100 270 70

25

4 1

24 22 15 23

25

270 100 270 100 270 100 270 100

270 40 270 40 270 40 270 40

27

41

15 18 13 14

27

270 10 270 10 90 10 90 10

28

41

29 30 31 32

28

270 10 270 10 270 10 270 10

29

41

30 28 32 33

28

90 10 270 10 90 10 90 10
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30

41

31 28 29 33

30

a0 10 270 10 90 10 90 10

31

41

32 28 30 33

31

90 10 270 10 90 10 90 10

32

41

29 28 31 33

3z

90 10 270 10 90 10 90 i0

33

41

32 31 30 29

a3

270 10 270 10 270 10 270 10



APENDICE C. MODELAGEM DO EXEMPLO PROPOSTO 117

Modelagem da Quina:

1

41
0032
1

270 0 270 0 90 0 90 1
2

41
0013
2

270 0 270 0 90 0 90 O
3

41
1002
3

9

0 3 270 0 270 0 90 2
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Modelagem do Degrau Interno:

-

1
042

(ST = I

70 O 270 0 90 0 90 3

4

41
0321
4

2

70 2 90 1 90 0 90 0O
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Modelagem Do Furo Nao Passante
5

1

41
2045
1

o

0 O 270 0 90 0 90 1

1
015

W N

90 O 270 0 90 O 90 2
3

41
4025
3

90 0 270 0 90 3 90 O
4

41
1035
4

90 0 270 0 80 0 90 ©
5

41
4321
5

o

0 0 90 0 90 0 90 O
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Modelagem do Furo Passante:

4

1

41

4020

1

90 0 270 0 90 0 270 O

2

41
1030
2

90 3 270 1 90 0 270 ©
3

41
4902¢0
3

90 0 270 2 90 0 270 ©
4

41
3010
4

9

0 0 270 0 90 O 270 O
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